Article

Relationship between the Acid-base Properties of Nitrogen-modified ZnO-ZrO2/SBA-15 Catalysts and Their Catalytic Performance in the Synthesis of 1,3-Butadiene from Ethanol

  • Bing Xue ,
  • Weixin Guan ,
  • Peng Wang ,
  • Shaowen Hou ,
  • Xinhui Chen ,
  • Yixing Wang ,
  • Huanqi Gou ,
  • Fenghao Guo ,
  • Mengchuang Wang ,
  • Tianzi Wang ,
  • Jinde Liu ,
  • Zhou Zheng ,
  • Shougen Chai ,
  • Jiarui Chen ,
  • Jianlin Zhang ,
  • Yunfei Ji ,
  • Jun Ni
Expand
  • a State Key Laboratory of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014
    b Zhejiang Bulk Chemical Co., LTD., Kaihua 324302
    c Jiaxing Nanyang Wanshixing Chemical Co., LTD., Jiaxing 314201

Received date: 2023-10-28

  Online published: 2024-04-02

Supported by

National Natural Science Foundation of China(22078301); National Natural Science Foundation of China(21875220)

Abstract

1,3-Butadiene (hereinafter referred to as butadiene), as an important organic intermediate in the chemical industry, has a wide range of uses in the petroleum and rubber industries. Using ethanol as raw material to produce butadiene can solve the non-renewable problem of raw materials, so it has received more and more attention. In this paper, catalysts were hydrothermally synthesized by using SBA-15 as the support, nitrate as the oxide precursor, and nitrogen-containing organic compounds as the additive. And then, the relationship between catalytic performance (ethanol conversion and butadiene yield) and the acid-base properties of catalysts was explored in the synthesis of butadiene from ethanol. Specifically, we used melamine (M), cyanuric acid (Ma), 1,10-phenanthroline (Pm), imidazole (Im), and 1,3,5-triazine (St) as nitrogen-containing additives for the preparation of Zn-Zr/SBA-15+X catalysts. Through the activity evaluation of the catalysts, the activities of ethanol dehydrogenation and dehydration, acetaldehyde condensation, and Meerwein-Ponndorf-Verley (MPV) reactions were calculated. Then, by analyzing the dependence of these activities and butadiene yield on the acidity and basicity (the strength and number of acidic/basic sites) of catalysts, we found that appropriate amounts of weak acid (0.022 mmol·g−1), moderate acid (0.078 mmol·g−1), moderate base (0.055 mmol·g−1), and strong base (0.056 mmol·g−1) are helpful for the ethanol dehydrogenation, whereas excess amount of weak acid and moderate acid will lead to the ethanol dehydration. Appropriate amounts of moderate acid (0.078 mmol·g−1) and moderate base (0.055 mmol·g−1) will favor the acetaldehyde condensation and MPV reactions. The butadiene yield is closely related to the activities of acetaldehyde condensation and MPV. The melamine-modified catalyst (Zn-Zr/SBA-15+M) has the optimum amounts of weak acid, moderate acid, moderate base, and strong base in accordance with the above quantities, resulting in the best catalytic performance: 99.5% conversion of ethanol, 65.5% selectivity of butadiene, and 0.45 gBD·gcat−1·h−1 of butadiene productivity.

Cite this article

Bing Xue , Weixin Guan , Peng Wang , Shaowen Hou , Xinhui Chen , Yixing Wang , Huanqi Gou , Fenghao Guo , Mengchuang Wang , Tianzi Wang , Jinde Liu , Zhou Zheng , Shougen Chai , Jiarui Chen , Jianlin Zhang , Yunfei Ji , Jun Ni . Relationship between the Acid-base Properties of Nitrogen-modified ZnO-ZrO2/SBA-15 Catalysts and Their Catalytic Performance in the Synthesis of 1,3-Butadiene from Ethanol[J]. Acta Chimica Sinica, 2024 , 82(5) : 493 -502 . DOI: 10.6023/A23100474

References

[1]
Corson, B. B.; Stahly, E. E.; Jones, H. E.; Bishop, H. D. Ind. Eng. Chem. 1949, 41, 1012.
[2]
Bruijnincx, P. C. A.; Weckhuysen, B. M. Angew. Chem., Int. Ed. 2013, 52, 11980.
[3]
(a) Cespi, D.; Passarini, F.; Vassura, I.; Cavani, F. Green Chem. 2016, 18, 1625.
[3]
(b) Shylesh, S.; Gokhale, A. A.; Scown, C. D.; Kim, D.; Ho, C. R.; Bell, A. T. ChemSusChem 2016, 9, 1462.
[4]
Pomalaza, G.; Arango Ponton, P.; Capron, M.; Dumeignil, F. Catal. Sci. Technol. 2020, 10, 4860.
[5]
(a) Li, H.; Riisager, A.; Saravanamurugan, S.; Pandey, A.; Sangwan, R. S.; Yang, S.; Luque, R. ACS Catal. 2018, 8, 148.
[5]
(b) Bin Samsudin, I.; Zhang, H.; Jaenicke, S.; Chuah, G.-K. Chem. Asian J. 2020, 15, 4199.
[6]
Sushkevich, V. L.; Ivanova, I. I.; Ordomsky, V. V.; Taarning, E. ChemSusChem 2014, 7, 2527.
[7]
Makshina, E. V.; Janssens, W.; Sels, B. F.; Jacobs, P. A. Catal. Today 2012, 198, 338.
[8]
Zhou, B.-X.; Ding, S.-S.; Zhang, B.-J.; Xu, L.; Chen, R.-S.; Luo, L.; Huang, W.-Q.; Xie, Z.; Pan, A.; Huang, G.-F. Appl. Catal., B 2019, 254, 321.
[9]
Osuga, R.; Fang, P.; Nishiyama, H.; Takizawa, K.; Yagihashi, N.; Yokoi, T.; Kondo, J. N. Microporous Mesoporous Mater. 2022, 346, 112278.
[10]
Tu, P.-X.; Xue, B.; Tong, Y.-Q.; Zhou, J.; He, Y.-H.; Cheng, Y.-H.; Ni, J.; Li, X.-N. ChemistrySelect 2020, 5, 7258.
[11]
Damyanova, S.; Grange, P.; Delmon, B. J. Catal. 1997, 168, 421.
[12]
(a) Larina, O. V.; Kyriienko, P. I.; Balakin, D. Y.; Vorokhta, M.; Khalakhan, I.; Nychiporuk, Y. M.; Matolín, V.; Soloviev, S. O.; Orlyk, S. M. Catal. Sci. Technol. 2019, 9, 3964.
[12]
(b) Connell, G.; Dumesic, J. A. J. Catal. 1987, 105, 285.
[12]
(c) Larina, O. V.; Kyriienko, P. I.; Soloviev, S. O. Catal. Lett. 2015, 145, 1162.
[13]
Ordomsky, V. V.; Sushkevich, V. L.; Ivanova, I. I. J. Mol. Catal. A: Chem. 2010, 333, 85.
[14]
(a) Jiang, D.-H.; Fang, G.-Q.; Tong, Y.-Q.; Wu, X.-Y.; Wang, Y.-F.; Hong, D.-S.; Leng, W.-H.; Liang, Z.; Tu, P.-X.; Liu, L.; Xu, K.-Y.; Ni, J.; Li, X.-N. ACS Catal. 2018, 8, 11973.
[14]
(b) Wu, X.-Y.; Fang, G.-Q.; Liang, Z.; Leng, W.-H.; Xu, K.-Y.; Jiang, D.-H.; Ni, J.; Li, X.-N. Catal. Commun. 2017, 100, 15.
[15]
(a) Urbano, F. J.; Aramendía, M. A.; Marinas, A.; Marinas, J. M.. J. Catal. 2009, 268, 79.
[15]
(b) Liang, Z.; Jiang, D.-H.; Fang, G.-Q.; Leng, W.-H.; Tu, P.-X.; Tong, Y.-Q.; Liu, L.; Ni, J.; Li, X.-N. ChemistrySelect 2019, 4, 4364.
Outlines

/