Synthesis and Characterization of an Emissive Ag(I) Complex with a D-A Type Ligand Containing Two Electron-withdrawing Groups
Received date: 2024-02-21
Online published: 2024-04-12
Supported by
National Natural Science Foundation of China(52073286); National Natural Science Foundation of China(2021ZZ115); National Natural Science Foundation of China(2021ZR132); Natural Science Foundation of Fujian Province(2021J011073); regional development projects in Fujian Province(2021H4008); Science and Technology Service Network Initiative from the Chinese Academy of Sciences(STS2023T3039)
Thermally activated delayed fluorescence (TADF) materials have attracted significant attention in the field of organic light-emitting diodes (OLEDs) due to their tremendous application potential. The outermost electronic configuration of the Ag(I) complex is d10 configuration, with d orbitals always being filled. There is no metal-centred (MC) state, therefore the quenching effect caused by the MC state does not occur. This renders it an appropriate choice for the design and development of TADF materials. In this study, we designed and synthesized a novel D-A ligand, 9-(4'-(4,6-diphenyl-1,3,5-triazin-2-yl)-4- (3-(pyridin-2-yl)-1H-pyrazole-1-yl)-[1,1'-biphenyl]-2-yl)-3,6-dimethoxy-9H-carbazole (L). The ligand employs 3,6-dimeth- oxy-9H-carbazole as the electron donor and comprises a bis-electron-donating group comprising triazine and pyridyl pyrazole as the electron acceptor. An ionic Ag(I) complex, Ag(L)(POP)(BF4) (1), was synthesised utilising L as a nitrogen-containing bidentate ligand and bis[2-(diphenylphosphino)phenyl] ether (POP) as a phosphorus-containing bidentate ligand. The ligand L and complex 1 were characterised by 1H and 13C nuclear magnetic resonance spectrometry, elemental analysis and X-ray single crystal diffraction analysis. The complex 1 belongs to the triclinic crystal system with space group P-1, with a=1.30213(4) nm, b=1.63383(4) nm, and c=1.93108(5) nm, α=92.941(2)°, β=105.247(3)°, γ=98.591(2)°, V=3.90076(18) nm3. The Ag+ ion in complex 1 is tetrahedrally coordinated with a twisted tetrahedral coordination geometry. At room temperature, complex 1 in solid form emits strong green light under UV light, with a maximum at 490 nm. The fluorescence lifetime is 23.0 ns, the thermally activated delayed fluorescence (TADF) lifetime is 503.9 μs, and the photoluminescence quantum yield (PLQY) is 43.8%. The steady-state emission spectra and time-dependent photoluminescent spectra of complex 1 at different temperatures demonstrate that complex 1 exhibits TADF characteristics at room temperature.
Yuqing Zhao , Dong Liang , Jihui Jia , Rongmin Yu , Can-Zhong Lu . Synthesis and Characterization of an Emissive Ag(I) Complex with a D-A Type Ligand Containing Two Electron-withdrawing Groups[J]. Acta Chimica Sinica, 2024 , 82(5) : 486 -492 . DOI: 10.6023/A24020058
[1] | Lu, J.; Pattengale, B.; Liu, Q.; Yang, S.; Shi, W.; Li, S.; Huang, J.; Zhang, J. J. Am. Chem. Soc. 2018, 140, 13719. |
[2] | Lundberg, P.; Lindh, E. M.; Tang, S.; Edman, L. ACS Appl. Mater. Inter. 2017, 9, 28810. |
[3] | Tang, X.; Cui, L.-S.; Li, H.-C.; Gillett, A. J.; Auras, F.; Qu, Y.-K.; Zhong, C.; Jones, S. T. E.; Jiang, Z.-Q.; Friend, R. H.; Liao, L.-S. Nature Mater. 2020, 19, 1332. |
[4] | Hamze, R.; Peltier, J. L.; Sylvinson, D.; Jung, M.; Cardenas, J.; Haiges, R.; Soleilhavoup, M.; Jazzar, R.; Djurovich, P. I.; Bertrand, G.; Thompson, M. E. Science 2019, 363, 601. |
[5] | Yuan, P.; Zhang, H.; Zhou, Y.; He, T.; Malola, S.; Gutiérrez-Arzaluz, L.; Li, Y.; Deng, G.; Dong, C.; Huang, R.; Song, X.; Teo, B. K.; Mohammed, O. F.; H?kkinen, H.; Bakr, O. M.; Zheng, N. Aggregate 2024, 5, e475. |
[6] | Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234. |
[7] | Zhang, Q.; Li, J.; Shizu, K.; Huang, S.; Hirata, S.; Miyazaki, H.; Adachi, C. J. Am. Chem. Soc. 2012, 134, 14706. |
[8] | Leitl, M. J.; Krylova, V. A.; Djurovich, P. I.; Thompson, M. E.; Yersin, H. J. Am. Chem. Soc. 2014, 136, 16032. |
[9] | Zhang, Q.; Li, B.; Huang, S.; Nomura, H.; Tanaka, H.; Adachi, C. Nat. Photonics 2014, 8, 326. |
[10] | Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y. Chem. Mater. 2017, 29, 1946. |
[11] | Cai, X.; Su, S. J. Adv. Funct. Mater. 2018, 28, 1802558. |
[12] | Huang, W.; Einzinger, M.; Zhu, T.; Chae, H. S.; Jeon, S.; Ihn, S.-G.; Sim, M.; Kim, S.; Su, M.; Teverovskiy, G.; Wu, T.; Van Voorhis, T.; Swager, T. M.; Baldo, M. A.; Buchwald, S. L. Chem. Mater. 2018, 30, 1462. |
[13] | Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics 2018, 12, 235. |
[14] | Shi, S.; Jung, M. C.; Coburn, C.; Tadle, A.; Sylvinson, M. R. D.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2019, 141, 3576. |
[15] | Cai, X. B.; Liang, D.; Yang, M.; Wu, X. Y.; Lu, C. Z.; Yu, R. Chem. Commun. 2022, 58, 8970. |
[16] | Liang, D.; Jia, J.-H.; Cai, X.-B.; Zhao, Y.-Q.; Wang, Z.-Q.; Lu, C.-Z. Inorg. Chem. Front. 2022, 9, 6561. |
[17] | Zhou, T.; Qian, Y.; Wang, H.-J.; Feng, Q.-Y.; Xie, L.-H.; Huang, W. Acta Chim. Sinica 2021, 79, 557 (in Chinese). |
[17] | (周涛, 钱越, 王宏健, 冯全友, 解令海, 黄维, 化学学报, 2021, 79, 557.) |
[18] | Wang, Y.-F.; Li, M.; Chen, C.-F. Acta Chim. Sinica 2023, 81, 588 (in Chinese). |
[18] | (王银凤, 李猛, 陈传峰, 化学学报, 2023, 81, 588.) |
[19] | Ge, F.-J.; Zhang, K.-Z.; Cao, Q.-P.; Xu, H.; Zhou, T.; Zhang, W.-H.; Ban, X.-X.; Zhang, X.-B.; Li, N.; Zhu, P. Acta Chim. Sinica 2023, 81, 1157 (in Chinese). |
[19] | (葛凤洁, 张开志, 曹清鹏, 徐慧, 周涛, 张文浩, 班鑫鑫, 张晓波, 李娜, 朱鹏, 化学学报, 2023, 81, 1157.) |
[20] | Liu, Z.-Y.; Rao, J.-F.; Zhu, S.-J.; Wang, B.-Y.; Yu, F.; Feng, Q.-Y.; Xie, L.-H. Acta Chim. Sinica 2023, 81, 820 (in Chinese). |
[20] | (刘振宇, 饶俊峰, 祝守加, 王兵洋, 余帆, 冯全友, 解令海, 化学学报, 2023, 81, 820.) |
[21] | Artem'ev, A. V.; Shafikov, M. Z.; Schinabeck, A.; Antonova, O. V.; Berezin, A. S.; Bagryanskaya, I. Y.; Plusnin, P. E.; Yersin, H. Inorg. Chem. Front. 2019, 6, 3168. |
[22] | Sujith, S.; Nam, E. B.; Lee, J.; Lee, S. U.; Lee, M. H. Inorg. Chem. Front. 2020, 7, 3456. |
[23] | Kim, D.; Coropceanu, V.; Bredas, J. L. J. Am. Chem. Soc. 2011, 133, 17895. |
[24] | Kim, D.; Zhu, L.; Brédas, J.-L. Chem. Mater. 2012, 24, 2604. |
[25] | Jia, J.-H.; Liang, D.; Yu, R.; Chen, X.-L.; Meng, L.; Chang, J.-F.; Liao, J.-Z.; Yang, M.; Li, X.-N.; Lu, C.-Z. Chem. Mater. 2019, 32, 620. |
[26] | Yersin, H.; Czerwieniec, R.; Shafikov, M. Z.; Suleymanova, A. F. Chemphyschem 2017, 18, 3508. |
[27] | Schinabeck, A.; Chen, J.; Kang, L.; Teng, T.; Homeier, H. H. H.; Suleymanova, A. F.; Shafikov, M. Z.; Yu, R.; Lu, C.-Z.; Yersin, H. Chem. Mater. 2019, 31, 4392. |
[28] | Chen, J.; Teng, T.; Kang, L.; Chen, X. L.; Wu, X. Y.; Yu, R.; Lu, C. Z. Inorg. Chem. 2016, 55, 9528. |
[29] | Volz, D.; Chen, Y.; Wallesch, M.; Liu, R.; Flechon, C.; Zink, D. M.; Friedrichs, J.; Flugge, H.; Steininger, R.; Gottlicher, J.; Heske, C.; Weinhardt, L.; Brase, S.; So, F.; Baumann, T. Adv. Mater. 2015, 27, 2538. |
[30] | Everly, R. M.; McMillin, D. R. Photochem. Photobiol. 2008, 50, 711. |
[31] | Hsu, C. W.; Lin, C. C.; Chung, M. W.; Chi, Y.; Lee, G. H.; Chou, P. T.; Chang, C. H.; Chen, P. Y. J. Am. Chem. Soc. 2011, 133, 12085. |
[32] | Shafikov, M. Z.; Czerwieniec, R.; Yersin, H. Dalton Trans. 2019, 48, 2802. |
[33] | Li, Z.; Yang, D.; Han, C.; Zhao, B.; Wang, H.; Man, Y.; Ma, P.; Chang, P.; Ma, D.; Xu, H. Angew. Chem.-Int. Ed. 2021, 60, 14846. |
[34] | Lu, T.; Chen, F. J. Comput. Chem. 2012, 33, 580. |
/
〈 |
|
〉 |