Article

Design, Synthesis and Property Study of a π-Expanded Naphthalene Diimide-Vinylogous Tetrathiafulvalene Derivative

  • Mengmeng He ,
  • Rui Zhang ,
  • Yulong Xie ,
  • Congwu Ge ,
  • Xike Gao
Expand
  • a College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066
    b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032
    c School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026
†(The authors contributed equally to this work).

Received date: 2024-06-27

  Online published: 2024-07-22

Supported by

National Natural Science Foundation of China(22225506); Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0520101); Shanghai Rising-Star Program(21QA1411100); Youth Innovation Promotion Association CAS(2022252)

Abstract

Organic field-effect transistors (OFETs) is the basic unit of complementary logic circuit, however, the development of n-type OFETs lags behind of p-type ones due to the barrier of electron injection and the interference from oxygen and water, which hinders the development of complementary logic circuit. Therefore, the design and synthesis of high-performance n-type organic semiconductors and the improvement of device performance and stability have important scientific significance. In this work, a novel naphthalene diimide (NDI)-vinylogous tetrathiafulvalene derivative (BDTNDI-DTYA)2was designed and synthesized via a π-expanded strategy by fusing the benzene-1,2-dithiol (BDT) and 2-(1,3-dithiol-2-ylidene) acetonitrile (DTYA) moieties onto the NDI core. The chemical structure of the compound was characterized by 1H NMR, 13C NMR, Fourier transform infrared spectroscopy (FT-IR) and high-resolution mass spectrometry (HRMS). The thermal, optical and electrochemical properties of (BDTNDI-DTYA)2 were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), ultraviolet-visible (UV-Vis) absorption spectra and cyclic voltammetry (CV). The energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of (BDTNDI-DTYA)2 calculated from CV were -5.66 and -4.01 eV, respectively. The edge absorption of (BDTNDI-DTYA)2 in thin film showed obvious red-shift (68 nm) relative to that in CHCl3 solution, indicating strong intermolecular interactions in solid state. The bottom-gate and top-contact (BGTC) OFETs based on (BDTNDI-DTYA)2 fabricated by spin-coating method, showed n-type electron transporting characteristics. The average electron mobility of the untreated devices was 0.04 cm2•V-1•s-1 when measured in nitrogen atmosphere and was increased of up to 1.00 cm2•V-1•s-1 when the thin films of (BDTNDI-DTYA)2were thermal annealed at 160 ℃. On the other hand, azulene was used as an additive to treat the thin films of (BDTNDI-DTYA)2 via sublimation, the average electron mobility of OFETs was increased to 0.98 cm2•V-1•s-1. The effect of thermal annealing treatment and azulene-treatment on the performance of (BDTNDI- DTYA)2-based OFETs were investigated by UV-Vis absorption spectra, atomic force microscopy (AFM) and X-ray dif-fraction (XRD). For UV-Vis absorption spectra of thin films of (BDTNDI-DTYA)2, after thermal annealing at 160 ℃ and azulene-treatment, the absorption peak in long-wavelength was enhanced and widened relative to that of the untreated thin films with obvious shoulder peaks and red-shifts (35 and 39 nm, respectively). The AFM and XRD results indicated that the improvement of device performance originated from the improved (BDTNDI-DTYA)2 thin film crystallinity and morphology. In this work, a π-expanded NDI-vinylogous tetrathiafulvalene derivative as n-type organic semiconductor was designed and synthesized, and azulene was used for the first time to effectively regulated the structure and morphology of the active layer of OFETs, which both provide new insights for development of novel organic semiconductors and their high performance OFET devices.

Cite this article

Mengmeng He , Rui Zhang , Yulong Xie , Congwu Ge , Xike Gao . Design, Synthesis and Property Study of a π-Expanded Naphthalene Diimide-Vinylogous Tetrathiafulvalene Derivative[J]. Acta Chimica Sinica, 2024 , 82(9) : 954 -961 . DOI: 10.6023/A24060204

References

[1]
(a) Wang J.; Ye D.; Meng Q.; Di C.; Zhu D. Adv. Mater. Technol. 2020, 5, 2000218.
[1]
(b) Shen Z.; Huang W.; Li L.; Li H.; Huang J.; Cheng J.; Fu Y. Small 2023, 19, 2302406.
[1]
(c) Hu Y.; Wang Z.; Huang Y.; Shi R.; Wang S.; Chen X.; Bi J.; Xuan Y.; Lei Y.; Li L.; Yang C.; Hu W. Chin. J. Chem. 2023, 41, 1539.
[1]
(d) Yuan L.; Wang Z.; Meng Y.; Wang S.; Sun Y.; Huang Y.; Li L.; Hu W. Chin. Chem. Lett. 2023, 34, 108569.
[2]
(a) Ren X. C.; Yang F. X.; Gao X. S.; Cheng S. T.; Zhang X. T.; Dong H. L.; Hu W. P. Adv. Energy Mater. 2018, 8, 1801003.
[2]
(b) Zhu Z.; Guo Y.; Liu Y. Mater. Chem. Front. 2020, 4, 2845.
[3]
(a) Yin A.; Wang J.; Hu S.; Sun M.; Sun B.; Dong M.; Zhang T.; Feng Z.; Zhang H.; Shi B.; Zhang C.; Liu H. Nano Energy 2023, 106, 108034.
[3]
(b) Zhao X.; Zhang H.; Zhang J.; Liu J.; Lei M.; Jiang L. Adv. Sci. 2023, 10, 2300483.
[4]
(a) Shi J.; Jie J.; Deng W.; Luo G.; Fang X.; Xiao Y.; Zhang Y.; Zhang X.; Zhang X. Adv. Mater. 2022, 34, e2200380
[4]
(b) Zhang Q.; Jin T. Y.; Ye X.; Geng D. C.; Chen W.; Hu W. P. Adv. Funct. Mater. 2021, 31, 2106151.
[5]
(a) Kumar B.; Kaushik B. K.; Negi Y. S. Polym. Rev. 2014, 54, 33.
[5]
(b) Zhao Z.; Yin Z.; Chen H.; Zheng L.; Zhu C.; Zhang L.; Tan S.; Wang H.; Guo Y.; Tang Q.; Liu Y. Adv. Mater. 2017, 29, 1602410.
[5]
(c) Vasimalla S.; Senanayak S. P.; Sharma M.; Narayan K. S.; Iyer P. K. Chem. Mater. 2014, 26, 4030.
[5]
(d) Han S.; Yu X.; Shi W.; Zhuang X.; Yu J. Org. Electron. 2015, 27, 160.
[5]
(e) Yuan Y.; Giri G.; Ayzner A. L.; Zoombelt A. P.; Mannsfeld S. C.; Chen J.; Nordlund D.; Toney M. F.; Huang J.; Bao Z. Nat. Commun. 2014, 5, 3005.
[6]
(a) Insuasty A.; Maniam S.; Langford S. J. Chem. Eur. J. 2019, 25, 7058.
[6]
(b) Luo H.; Cai Z.; Tan L.; Guo Y.; Yang G.; Liu Z.; Zhang G.; Zhang D.; Xu W.; Liu Y. J. Mater. Chem. C 2013, 1, 2688.
[6]
(c) Chen J.; Zhuang X.; Huang W.; Su M.; Feng L.; Swick S. M.; Wang G.; Chen Y.; Yu J.; Guo X.; Marks T. J.; Facchetti A. Chem. Mater. 2020, 32, 5317.
[6]
(d) Li S. W.; Zhu C. Y. J.; Luo Y. H.; Zhang Y. R.; Teng H. M.; Wang Z. R.; Zhen Y. G. Acta Chim. Sinica 2022, 80, 1600 (in Chinese).
[6]
(李善武, 朱陈宇杰, 罗尹豪, 张亚茹, 滕汉明, 王宗瑞, 甄永刚, 化学学报, 2022, 80, 1600.)
[7]
(a) Hu Y.; Wang Z.; Zhang X.; Yang X.; Ge C.; Fu L.; Gao X. Org. Lett. 2017, 19, 468.
[7]
(b) Wu W.; Li J.; Zhao Z.; Yang X.; Gao X. Org. Chem. Front. 2017, 4, 823.
[8]
(a) Choudhury A.; Gupta R. K.; Garai R.; Iyer P. K. ACS Appl. Electron. 2021, 3, 5393.
[8]
(b) Doumon N. Y.; Wang G.; Qiu X.; Minnaard A. J.; Chiechi R. C.; Koster L. J. A. Sci. Rep. 2019, 9, 4350.
[8]
(c) Ichikawa M.; Yamamura K.; Jeon H. G.; Nakajima M.; Taniguchi Y. J. Appl. Phys. 2011, 109, 054504.
[8]
(d) Lee Y.; Ho D.; Valentini F.; Earmme T.; Marrocchi A.; Vaccaro L.; Kim C. J. Mater. Chem. C 2021, 9, 16506.
[9]
(a) Zhong L.; Kang S. H.; Oh J.; Jung S.; Cho Y.; Park G.; Lee S.; Yoon S. J.; Park H.; Yang C. Adv. Funct. Mater. 2022, 32, 2201080.
[9]
(b) Bao S.; Yang H.; Fan H.; Zhang J.; Wei Z.; Cui C.; Li Y. Adv. Mater. 2021, 33, 2105301.
[9]
(c) Yu R.; Yao H.; Hong L.; Qin Y.; Zhu J.; Cui Y.; Li S.; Hou J. Nat. Commun. 2018, 9, 4645.
[9]
(d) Zhang G.; Hu D.; Tang H.; Song H.; Duan S.; Kan Z.; Lu S. Sol. RRL 2023, 7, 2200994.
[9]
(e) Song X.; Zhang K.; Guo R.; Sun K.; Zhou Z.; Huang S.; Huber L.; Reus M.; Zhou J.; Schwartzkopf M.; Roth S. V.; Liu W.; Liu Y.; Zhu W.; Müller-Buschbaum P. Adv. Mater. 2022, 34, 2200907.
[9]
(f) Xiao M.; Meng Y.; Tang L.; Li P.; Tang L.; Zhang W.; Hu B.; Yi F.; Jia T.; Cao J.; Xu C.; Lu G.; Hao X.; Ma W.; Fan Q. Adv. Funct. Mater. 2024, 34, 2311216.
[10]
(a) He Z.; Zhang Z.; Bi S. J. Mater. Sci: Mater. Electron. 2019, 30, 20899.
[10]
(b) Scaccabarozzi A. D.; Basu A.; Aniés F.; Liu J.; Zapata-Arteaga O.; Warren R.; Firdaus Y.; Nugraha M. I.; Lin Y.; Campoy-Quiles M.; Koch N.; Müller C.; Tsetseris L.; Heeney M.; Anthopoulos T. D. Chem. Rev. 2022, 122, 4420.
[10]
(c) Jiang X.; Tu K.; Duan T. N.; Xiao Z. Y. Acta Chim. Sinica 2024, 82, 551 (in Chinese).
[10]
(江雪, 涂开槐, 段泰男, 肖泽云, 化学学报, 2024, 82, 551.) .
[10]
(c) Yuan L. Q.; Huang Y. N.; Chen X. S.; Gao Y. X.; Ma X. N.; Wang Z. W.; Hu Y. X.; He J. B.; Han C.; Li J.; Li Z. Y.; Weng X. F.; Huang R.; Cui Y.; Li L. Q.; Hu W. P. Nat. Mater. DOI:10.1038/s41563-024-01933-w.
[11]
(a) Anderson A. G.; Steckler B. M. J. Am. Chem. Soc. 1959, 81, 4941.
[11]
(b) Lemal D. M.; Goldman G. D. J. Chem. Educ. 1988, 65, 923.
[11]
(c) Robertson J. M.; Shearer H. M. M.; Sim G. A.; Watson D. G. Acta Cryst. 1962, 15, 1.
[11]
(d) Hou B.; Li J.; Xin H. S.; Yang X. D.; Gao H. L.; Peng P. Z.; Gao X. K. Acta Chim. Sinica 2020, 78, 788 (in Chinese).
[11]
(侯斌, 李晶, 辛涵申, 杨笑迪, 高洪磊, 彭培珍, 高希珂, 化学学报, 2020, 78, 788.) .
[11]
(e) Wang Y.; Xiang J. J.; Ge C. W.; Gao X. K. Acta Chim. Sinica 2023, 81, 1341 (in Chinese).
[11]
(汪洋, 向焌钧, 葛从伍, 高希珂, 化学学报, 2023, 81, 1341.)
[12]
(a) Zhou M.; Li J.; Cheng J.; Ge C. W.; Cheng T. Y.; Gao X. K. Chin. J. Org. Chem. 2021, 41, 4400 (in Chinese).
[12]
(周敏, 李晶, 程杰, 葛从伍, 程探宇, 高希珂, 有机化学, 2021, 41, 4400.) .
[12]
(b) Gao X. K.; Di C. A.; Hu Y. B.; Yang X. D.; Fan H. Y.; Zhang F. J; Liu Y. Q.; Li H. Q.; Zhu D. B. J. Am. Chem. Soc. 2010, 132, 3697.
[12]
(c) Leng B.; Lu D.; Jia X.; Yang X.; Gao X. K. Org. Chem. Front. 2015, 2, 372.
[13]
Azumi R.; G?tz G.; B?uerle P. Synth. Met. 1999, 101, 569.
[14]
Frisch M. J. T., G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery Jr J. A.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J. Gaussian 16, Wallingford CT, 2016.
[15]
Hu Y.; Gao X.; Di C.; Yang X.; Zhang F.; Liu Y.; Li H.; Zhu D. Chem. Mater. 2011, 23, 1204.
[16]
Shukla J.; Ajayakumar M. R.; Mukhopadhyay P. Org. Lett. 2018, 20, 7864.
[17]
(a) Jelley E. E. Nature 1936, 138, 1009.
[17]
(b) Bouchard J.; Belletête M.; Durocher G.; Leclerc M. Macromolecules 2003, 36, 4624.
[17]
(c) Guo X.; Ortiz R. P.; Zheng Y.; Kim M. G.; Zhang S.; Hu Y.; Lu G.; Facchetti A.; Marks T. J. J. Am. Chem. Soc. 2011, 133, 13685.
[17]
(d) Kang S. H.; Lee D.; Kim H.; Choi W.; Oh J.; Oh J. H.; Yang C. ACS Appl. Mater. Interfaces 2021, 13, 52840.
[18]
Brown A. R.; Jarrett C. P.; de Leeuw D. M.; Matters M. Synth. Met. 1997, 88, 37.
[19]
(a) Zaumseil J.; Sirringhaus H. Chem. Rev. 2007, 107, 1296.
[19]
(b) Higashino T.; Mori T. Phys. Chem. Chem. Phys. 2022, 24, 9770.
[20]
(a) Zhong L.; Jeong S.; Lee S.; Mai T. L. H.; Park J.; Park J.; Kim W.; Yang C. Chem. Commun. 2023, 59, 12108.
[20]
(b) Wang J. F; Li Z. Acta Chim. Sinica 2021, 79, 575 (in Chinese).
[20]
(王金凤, 李振. 化学学报, 2021, 79, 575.)
[21]
(a) Mas-Torrent M.; Rovira C. Chem. Rev. 2011, 111, 4833.
[21]
(b) Zhou Q.; Yang J.; Du M.; Yu X.; Li C.; Zhang X.-S.; Peng Q.; Zhang G.; Zhang D. J. Mater. Chem. C 2022, 10, 2814.
[21]
(c) Chen X.; Guo Y.; Tan L.; Yang G.; Li Y.; Zhang G.; Liu Z.; Xu W.; Zhang D. J. Mater. Chem. C 2013, 1, 1087
[22]
Wang Y.; Sun S.; Huang Y.; Fu Y.; Qi J.; Tie K.; Wang Z.; Jiao F.; Si R.; Chen X.; Li L.; Hu W. Aggregate 2023, 4, e379
[23]
(a) Scholes D. T.; Yee P. Y.; Lindemuth J. R.; Kang H.; Onorato J.; Ghosh R.; Luscombe C. K.; Spano F. C.; Tolbert S. H.; Schwartz B. J. Adv. Funct. Mater. 2017, 27, 1702654.
[23]
(b) Jeong J. W.; Jo G.; Choi S.; Kim Y. A.; Yoon H.; Ryu S.-W.; Jung J.; Chang M. ACS Appl. Mater. Interfaces 2018, 10, 18131.
[23]
(c) Guo C.; Zhang Q.; Li H.; Lu J. Chem. Asian J. 2020, 15, 2493.
[24]
Nozoe T.; Seto S.; Matsumura S.; Murase Y. Bull. Chem. Soc. Jan. 1962, 35, 1179.
Outlines

/