Review

Research Progress on the Preparation Method of NIR-II Silver Chalcogenide Quantum Dots and Its Application in Cancer Diagnosis and Treatment

  • Tong Liu ,
  • Huihui Pi ,
  • Bingkun Chen ,
  • Xiaoling Zhang
Expand
  • a School of Chemistry and Chemical Engineering, Beijing Insititute of Technology, Beijing 100081
    b School of Optics and Photonics, Beijing Insititute of Technology, Beijing 100081

Received date: 2024-06-03

  Online published: 2024-07-23

Supported by

National Natural Science Foundation of China(22174008); National Natural Science Foundation of China(22177013); National Natural Science Foundation of China(21974009); National Natural Science Foundation of China(22274010); Foundation Enhancement Program(2021-JCJQ-2JJ-XXXX); Fundamental Research Funds of Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices(AFMD-KFJJ-22102)

Abstract

With the increasing number of cancer-related deaths year by year, the development of new early diagnosis and precise treatment techniques has become a crucial research topic in the field of oncology. Fluorescence imaging, as a commonly used diagnostic method for cancer, offers advantages such as non-ionizing radiation and high sensitivity. Compared to traditional visible region and the first near-infrared window imaging technologies, the second near-infrared window (NIR-II, 1000~1700 nm) fluorescence imaging technology presents characteristics of weak tissue scattering and low autofluorescence. Due to its deep tissue penetration, good spatial resolution, and high signal to noise ratio, it has attracted widespread attention. In recent years, a considerable amount of probes operating in NIR-II have been consistently under development. Quantum dots, as a type of nanoprobes, are influenced by the quantum confinement effect, providing tunable luminescent properties that allow absorption and emission wavelengths to span from the visible region to NIR-II. Silver chalcogenide quantum dots, as a low-toxicity type of quantum dots, exhibit excellent biocompatibility. Different methods have been developed to prepare silver chalcogenide quantum dots, including binary and ternary quantum dots, with emission spectra covering the entire range from 350 to 1700 nm. Silver chalcogenide quantum dots not only find applications in NIR-II fluorescence imaging but also hold potential for various imaging modalities such as magnetic resonance imaging, computed tomography, as well as therapeutic functions like photothermal therapy. They can serve as multifunctional biological probes for biological systems, providing innovative approaches for cancer diagnosis and therapy. This article reviews the classification of silver chalcogenide quantum dots, the preparation of NIR-II Ag2Te quantum dots and the latest advancements in their application in tumor diagnosis and treatment. It outlines the advancements made in the study of silver chalcogenide quantum dots in the last ten years, emphasizing the obstacles and possibilities encountered in the development of these versatile NIR-II nanoprobes.

Cite this article

Tong Liu , Huihui Pi , Bingkun Chen , Xiaoling Zhang . Research Progress on the Preparation Method of NIR-II Silver Chalcogenide Quantum Dots and Its Application in Cancer Diagnosis and Treatment[J]. Acta Chimica Sinica, 2024 , 82(9) : 1001 -1012 . DOI: 10.6023/A24060181

References

[1]
Sung H.; Ferlay J.; Siegel R. L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F. Ca-Cancer J. Clin. 2021, 71, 209.
[2]
Ai X.-Z.; Mu J.; Xing B.-G. Theranostics, 2016, 6, 2439.
[3]
Jiang S.; Lin J.; Huang P. Adv. Healthc. Mater. 2023, 12, 2202208.
[4]
Lammers T.; Aime S.; Hennink W. E.; Storm G.; Kiessling F. Acc. Chem. Res. 2011, 44, 1029.
[5]
Ng K. K.; Zheng G. Chem. Rev. 2015, 115, 11012.
[6]
Li C.; Chen G.; Zhang Y.; Wu F.; Wang Q. J. Am. Chem. Soc. 2020, 142, 14789.
[7]
Yoon S.; Cheon S. Y.; Park S.; Lee D.; Lee Y.; Han S.; Kim M.; Koo H. Biomater. Res. 2022, 26, 57.
[8]
Guo W.-S.; Yang W.-T.; Wang Y.; Sun X.-L.; Liu Z.-Y.; Zhang B.-B.; Chang J.; Chen X.-Y. Nano Res. 2014, 7, 1581.
[9]
Lavis L. D. Biochemistry 2017, 56, 5165.
[10]
Zhao J.; Zhong D.; Zhou S. J. Mater. Chem. B 2017, 6, 349.
[11]
Wang T.; Chen Y.; Wang B.; Gao X.; Wu M. Biomolecules 2022, 12, 1044.
[12]
Diao S.; Hong G.-S.; Antaris A. L.; Blackburn J. L.; Cheng K.; Cheng Z.; Dai H.-J. Nano Res. 2015, 8, 3027.
[13]
Schmidt E. L.; Ou Z.; Ximendes E.; Cui H.; Keck C. H. C.; Jaque D.; Hong G. Nat. Rev. Methods Primers 2024, 4, 23.
[14]
Liu Y.; Li Y.; Koo S.; Sun Y.; Liu Y.; Liu X.; Pan Y.; Zhang Z.; Du M.; Lu S.; Qiao X.; Gao J.; Wang X.; Deng Z.; Meng X.; Xiao Y.; Kim J. S.; Hong X. Chem. Rev. 2022, 122, 209.
[15]
Mu J.; Xiao M.; Shi Y.; Geng X.; Li H.; Yin Y.; Chen X. Angew. Chem. Int. Ed. 2022, 61, e202114722.
[16]
Su Y.; Yu B.; Wang S.; Cong H.; Shen Y. Biomaterials, 2021, 271, 120717.
[17]
Zheng B.; Fan J.; Chen B.; Qin X.; Wang J.; Wang F.; Deng R.; Liu X. Chem. Rev. 2022, 122, 5519.
[18]
Borovaya M.; Horiunova I.; Plokhovska S.; Pushkarova N.; Blume Y.; Yemets A. Int. J. Mol. Sci. 2021, 22, 12202.
[19]
Wang Y.; Hu Y.; Ye D.-J. Angew. Chem. Int. Ed. 2022, 61, e202209512
[20]
Xu Y.; Zhao Y.; Zhang Y.-J.; Cui Z.-F.; Wang L.-H.; Fan C.-H.; Gao J.-M.; Sun Y.-H. Acta Chim. Sinica 2018, 76, 393 (in Chinese).
[20]
(徐毅, 赵彦, 张叶俊, 崔之芬, 王丽华, 樊春海, 高基民, 孙艳红, 化学学报, 2018, 76, 393.)
[21]
Alivisatos A. P. J. Phys. Chem. 1996, 100, 13226.
[22]
Kovalenko M. V.; Manna L.; Cabot A.; Hens Z.; Talapin D. V.; Kagan C. R.; Klimov V. I.; Rogach A. L.; Reiss P.; Milliron D. J.; Guyot-Sionnnest P.; Konstantatos G.; Parak W. J.; Hyeon T.; Korgel B. A.; Murray C. B.; Heiss W. ACS Nano 2015, 9, 1012.
[23]
Gui R.-J.; Jin H.; Wang Z.-H.; Tan L.-J. Coord. Chem. Rev. 2015, 296, 91.
[24]
Tang H.; Yang S.-T.; Ke D.M.; Yang Y.-F.; Liu J.-H.; Chen X.; Wang H.-F.; Liu Y.-F. Toxicol. Res. 2017, 6, 693.
[25]
Zhang J.-Z.; Tang H.; Chen X.-Z.; Su Q.; Xi W.-S.; Liu Y.-Y.; Liu Y.; Cao A.; Wang H.-F. J. Nanopart. Res. 2020, 22, 287.
[26]
Li B.-J.; Wang G.-H.; Tong Y.-J.; Zhang Y.-J.; Sun S.-K.; Yu C.-S. ACS Biomater. Sci. Eng. 2023, 9, 449.
[27]
Liu J.; Zheng X.-P.; Yan L.; Zhou L.-J.; Tian G.; Yin W.-Y.; Wang L.-M.; Liu Y.; Hu Z.-B.; Gu Z.-J.; Chen C.-Y.; Zhao Y.-L. ACS Nano 2015, 9, 696.
[28]
Wang Z.-T.; Huang P.; Jacobson O.; Wang Z.; Liu Y.-J.; Lin L.-S.; Lin J.; Lu N.; Zhang H.-M.; Tian R.; Niu G.; Liu G.; Chen X.-Y. ACS Nano 2016, 10, 3453.
[29]
Chaudhuri R. G.; Paria S. J. Colloid Interface Sci. 2012, 369, 117.
[30]
Huang Y.; Tian F.; Sun L.; Ji C.; Grimes C. A.; Cai Q. Sens. Actuators, B 2023, 381, 133457.
[31]
Zhu C.-N.; Jiang P.; Zhang Z.-L.; Zhu D.-L.; Tian Z.-Q.; Pang D.-W. ACS Appl. Mater. Inter. 2013, 5, 1186.
[32]
Liu Z.-Y.; Liu A.-A.; Fu H.; Cheng Q.-Y.; Zhang M.-Y.; Pan M.-M.; Liu L.-P.; Luo M.-Y.; Tang B.; Zhao W.; Kong J.; Shao X.-G.; Pang D.-W. J. Am. Chem. Soc. 2021, 143, 12867.
[33]
Zhang Y.-J.; Liu Y.-S.; Li C.-Y.; Chen X.-Y.; Wang Q.-B. J. Phys. Chem. C 2014, 118, 4918.
[34]
Ma Y.; Zhang Y.; Yu W.-W. J. Mater. Chem. C 2019, 7, 13662.
[35]
Zivkovic D.; Cosovic V.; Zivkovic Z.; Strbac N.; Sokic M.; Talijan N.; Boyanov B.; Mitovski A. Mater. Sci. Semicond. Process. 2013, 16, 217.
[36]
Junod P.; Hediger H.; Kilchor B.; Wullschleger, J. Philos. Mag. 1977, 36, 941.
[37]
Sun S.-r.; Xia D.-g. Solid State Ionics 2008, 179, 2330.
[38]
Dong B.-H.; Li C.-Y.; Chen G.-C.; Zhang Y.-J.; Zhang Y.; Deng M.-J.; Wang Q.-B. Chem. Mater. 2013, 25, 2503.
[39]
Kapitza P. New J. Chem. 1928, 119, 358.
[40]
Yang M.; Gui R.-J.; Jin H.; Wang Z.-H.; Zhang F.-F.; Xia J.-F.; Bi S.; Xia Y.-Z. Colloids Surf., B 2015, 126, 115.
[41]
Zhu C.; Chen Z.; Gao S.; Goh B.L.; Bin Samsudin I.; Lwe K. W.; Wu Y.; Wu C.; Su X. Prog. Nat. Sci.: Mater. Int. 2019, 29, 628.
[42]
Lian W.; Fang Z.; Tu D.; Li J.; Han S.; Li R.-F.; Shang X.-Y.; Chen X.-Y. Acta Chim. Sinica 2022, 80, 625 (in Chinese).
[42]
(廉纬, 方泽铠, 涂大涛, 李嘉尧, 韩思远, 李仁富, 商晓颖, 陈学元, 化学学报, 2022, 80, 625.)
[43]
Tappan B. A.; Horton M. K.; Brutchey R. L. Chem. Mater. 2020, 32, 2935.
[44]
Li J.; Guan T.-Y.; Tu D.-T.; Lian W.; Zhang P.; Han S.-Y.; Wenb F.; Chen X.-Y. Chem. Commun. 2022, 58, 2204.
[45]
Hamilton M. A.; Barnes A. C.; Howells W. S.; Fischer H. E. J. Phys.: Condens. Matter. 2001, 13, 2425.
[46]
Li P.; Peng Q.; Li Y.-D. Chem. Eur. J. 2011, 17, 941.
[47]
Horton N. G.; Wang K.; Kobat D.; Clark C. G.; Wise F. W.; Schaffer C. B.; Xu C. Nat. Photonics 2013, 7, 205.
[48]
Wang M.-R.; Wu C.-Y.; Sinefeld D.; Li B.; Xia F.; Xu C. Biomed. Opt. Express 2018, 9, 3534.
[49]
Nieves L. M.; Mossburg K.; Hsu J. C.; Maidment A. D. A.; Cormode D. P. Nanoscale 2021, 13, 19306.
[50]
Zhu H.-M.; Song N.-H.; Lian T.-Q. J. Am. Chem. Soc. 2010, 132, 15038.
[51]
Yarema M.; Pichler S.; Sytnyk M.; Seyrkammer R.; Lechner R.T.; Fritz-Popovski G.; Jarzab D.; Szendrei K.; Resel R.; Korovyanko O.; Loi M.A.; Paris O.; Hesser G.; Heiss W. ACS Nano 2011, 5, 3758.
[52]
Sahu A.; Qi L.; Kang M. S.; Deng D.; Norris D. J. J. Am. Chem. Soc. 2011, 133, 6509.
[53]
Chen S.; Tang T.; Huang B.; Liu F.; Cui R.; Zhang M.-X.; Sun T.-L. ACS Appl. Nano Mater. 2022, 5, 3415.
[54]
Chen C.; He X.; Gao L.; Ma N. ACS Appl. Mater. Inter. 2013, 5, 1149.
[55]
Ayaskanta S.; Ankur K.; Donna D. D.; David J. N. Chem. Commun. 2012, 48, 5458.
[56]
Jin H.; Gui R.-J.; Sun J.; Wang Y.-F. Colloids Surf., B 2016, 143, 118.
[57]
Zhang Y.; Hong G.-S.; Zhang Y.-J.; Chen G.-C.; Li F.; Dai H.-J.; Wang Q.-B. ACS Nano 2012, 6, 3695.
[58]
Shi X.-H.; Dai Y.-Y.; Wang L.; Wang Z.-G.; Liu S.-L. ACS Appl. Bio Mater. 2021, 4, 7692.
[59]
Ding C.; Huang Y.-J.; Shen Z.-Y.; Chen X.-Y. Adv. Mater. 2021, 33, 2007768.
[60]
Jiang P.; Zhu C.-N.; Zhang Z.-L.; Tian Z.-Q.; Pang D.-W. Biomaterials 2012, 33, 5130.
[61]
Gu Y.-P.; Cui R.; Zhang Z.-L.; Xie Z.-X.; Pang D.-W. J. Am. Chem. Soc. 2012, 134, 79.
[62]
Yang H.-Y.; Zhao Y.-W.; Zhang Z.-Y.; Xiong H.-M.; Yu S.-N. Nanotechnology 2013, 24, 055706.
[63]
Li X.; Liu Z.; Luo K.; Yin X.; Lin X.; Zhu C.-L. Chem. Asian J. 2019, 14, 155.
[64]
Dong L.; Li W.; Yu L.; Sun L.; Chen Y.; Hong G.-B. ACS Appl. Mater. Inter. 2020, 12, 42558.
[65]
Wang S.-B.; Hu B.; Liu C.-C.; Yu S.-H. J. Colloid Interface Sci. 2008, 325, 351.
[66]
Wang C.-X.; Wang Y.; Xu L.; Zhang D.; Liu M.-X.; Li X.-W.; Sun H.-C.; Lin Q.; Yang B. Small 2012, 8, 3137.
[67]
Wang Y.; Yan X.-P. Chem. Commun. 2013, 49, 3324.
[68]
Yang T.; Tang Y.-A.; Liu L.; Lv X.-Y.; Wang Q.-L.; Ke H.-T.; Deng Y.-B.; Yang H.; Yang X.-L.; Liu G.; Zhao Y.-L.; Chen H.-B. ACS Nano 2017, 11, 1848.
[69]
Lu F.; Ju W.; Zhao N.; Zhao T.; Zhan C.; Wang Q.; Fan Q.; Huang W. Biochem. Biophys. Res. Commun. 2020, 529, 930.
[70]
Zhang X.; Wang W.; Su L.; Ge X.; Ye J.; Zhao C.; He Y.; Yang H.; Song J.-B.; Duan H.-W. Nano Lett. 2021, 21, 2625.
[71]
Sun P.; Li K.; Liu X.; Wang J.; Qiu X.; Wei W.; Zhao J. Angew. Chem. Int. Ed. 2023, 62, e202300085
[72]
Yin X.-H.; Li X.-L.; Zhu C.-L.; Lin X.-C.; Xie Z.-H. New J. Chem. 2020, 44, 4850.
[73]
Zhou J.-Q.; Huang Y.; Zhang Z.-L.; Pang D.-W.; Tian Z.-Q. Chem. J. Chinese U. 2021, 6, 2072.
[74]
Liu J.; Zheng D.; Zhong L.-Z.; Gong A.; Wu S.; Xie Z.-X. Biochem. Biophys. Res. Commun. 2021, 544, 60.
[75]
Kumar N.; Ray S. S.; Ngila J. C. New J. Chem. 2017, 41, 14618.
[76]
Ortega-Rodriguez A.; Shen Y.; Zabala Gutierrez I.; Santos H.D.A.; Torres Vera V.; Ximendes E.; Villaverde G.; Lifante J.; Gerke C.; Fernandez N.; Calderon O. G.; Melle S.; Marques-Hueso J.; Mendez-Gonzalez D.; Laurenti M.; Jones C. M. S.; Manuel Lopez-Romero J.; Contreras-Caceres R.; Jaque D.; Rubio-Retama J. ACS Appl. Mater. Inter. 2020, 12, 12500.
[77]
Ding Q.; Zhao J.; Zhang H.; Li C.; Sun M.; Chen C.; Lin H.-W.; Xu C.-L.; Kuang H.; Xu L.-G. Angew. Chem. Int. Ed. 2022, 61, e202210370
[78]
Zhou Y.; Huang B.; Chen S.-H.; Liu S.-L.; Zhang M.; Cui R. Nano Res. 2022, 16, 2719.
[79]
Chi Y.; Hu Q.; Yi S.; Qu H.; Xiao Y. Talanta 2023, 262, 124668.
[80]
Yang H.; Li R.; Zhang Y.; Yu M.; Wang Z.; Liu X.; You W.; Tu D.; Sun Z.; Zhang R.; Chen X.; Wang Q. J. Am. Chem. Soc. 2021, 143, 2601.
[81]
Zhang Y.-J.; Yang H.; An X.; Wang Z.; Yang X.; Yu M.; Zhang R.; Sun Z.-Q.; Wang Q.-B. Small 2020, 16, 2001003.
[82]
Reiss P.; Protiere M.; Li L. Small 2009, 5, 154.
[83]
Gahyeon K.; Dongsun C.; So Y. E.; Haemin S.; Kwang S. J. Nano Lett. 2021, 21, 8073.
[84]
Wang K.; Deng K.-H.; Tian Y.-S.; Sun M.-Y.; Yu Z.-l.; Tian Z.-Q.; Zhang Z.-L. ACS Appl. Nano Mater. 2023, 6, 14289.
[85]
Santos H. D. A.; Zabala Gutierrez I.; Shen Y.; Lifante J.; Ximendes E.; Laurenti M.; Mendez-Gonzalez D.; Melle S.; Calderon O. G.; Lopez Cabarcos E.; Fernandez N.; Chaves-Coira I.; Lucena-Agell D.; Monge L.; Mackenzie M. D.; Marques-Hueso J.; Jones C. M. S.; Jacinto C.; del Rosal B.; Kar A. K.; Rubio-Retama J.; Jaque D. Nat. Commun. 2020, 11, 2933.
[86]
Peterson M. D.; Cass L. C.; Harris R. D.; Edme K.; Sung K.; Weiss E. A. Annu. Rev. Phys. Chem. 2014, 65, 317.
[87]
Wuister S. F.; Donegá C. D.; Meijerink A. J. Phys. Chem. B 2004, 108, 17393.
[88]
Kim T.-G.; Zherebetskyy D.; Bekenstein Y.; Oh M. H.; Wang L.-W.; Jang E.; Alivisatos A. P. ACS Nano 2018, 12, 11529.
[89]
Zabala Gutierrez I.; Gerke C.; Shen Y.; Ximendes E.; Manso Silvan M.; Marin R.; Jaque D.; Calderon O. G.; Melle S.; Rubio-Retama J. ACS Appl. Mater. Inter. 2022, 14, 4871.
[90]
Yu M.; Zhang Z.; Zhu G.; Gu Z.; Duan Y.; Yu L.; Gao G.; Sun T.-L. Acta Chim. Sinica 2021, 79, 1281 (in Chinese).
[90]
(余梦, 张子俊, 朱国委, 谷振华, 段玉霖, 余良翀, 高冠斌, 孙涛垒, 化学学报, 2021, 79, 1281.)
[91]
Karimipour M.; Moradi N.; Molaei M. J. Lumin. 2017, 182, 91.
[92]
Che D.; Ding D.; Wang H.; Zhang Q.; Li Y. J. Alloys Compd. 2016, 678, 51.
[93]
Tang S.-L.; He C.-S.; Li D.; Cai W.-H.; Fan L.-Z.; Li Y.-C. J. Mater. Sci. 2018, 53, 11355.
[94]
Du Y.-P.; Xu B.; Fu T.; Cai M.; Li F.; Zhang Y.; Wang Q.-B. J. Am. Chem. Soc. 2010, 132, 1470.
[95]
Hong G.-S.; Antaris A. L.; Dai H.-J. Nat. Biomed. Eng. 2017, 1, 0010.
[96]
Owens E. A.; Henary M.; El Fakhri G.; Choi H. S. Acc. Chem. Res. 2016, 49, 1731.
[97]
Wang B.; Cai X.-D.; Xiao J.-X. Acta Chim. Sinica 2024, 82, 367 (in Chinese).
[97]
(王博, 蔡向东, 肖建喜, 化学学报, 2024, 82, 367.)
[98]
Subhan M. A.; Yalamarty S. S. K.; Filipczak N.; Parveen F.; Torchilin V. P. J. Pers. Med. 2021, 11, 571.
[99]
Tian H.; Zhang T.; Qin S.; Huang Z.; Zhou L.; Shi J.; Nice E. C.; Xie N.; Huang C.-H.; Shen Z.-S. J. Hematol. Oncol. 2022, 15, 132.
[100]
Zhang Y.; Zhao N.; Qin Y.; Wu F.; Xu Z.; Lan T.; Cheng Z.; Zhao P.; Liu H. Nanoscale, 2018, 10, 16581.
[101]
Qu S.-H.; Jia Q.; Li Z.; Wang Z.-L.; Shang L. Sci. Bull. 2022, 67, 1274.
[102]
Zhang J.-J.; Lin Y.; Zhou H.; He H.; Ma J.-J.; Luo M.-Y.; Zhang Z.-L.; Pang D.-W. Adv. Healthc. Mater. 2019, 8, 1900341.
[103]
Dong L.-L.; Zhang P.; Lei P.-P.; Song S.-Y.; Xu X.; Du K.-M.; Feng J.; Zhang H.-J. ACS Appl. Mater. Inter. 2017, 9, 20426.
[104]
Yu M.-X.; Ma J.-J.; Wang J.-M.; Cai W.-G.; Zhang Z.; Huang B.; Sun M.-Y.; Cheng Q.-Y.; Zhang Z.-L.; Pang D.-W.; Tian Z.-Q. ACS Appl. Nano Mater. 2020, 3, 6071.
[105]
Yu X.; Liu X.; Wu W.; Yang K.; Mao R.; Ahmad F.; Chen X.; Li W. Angew. Chem. Int. Ed. 2019, 58, 2017.
[106]
Muthu M. S.; Leong D. T.; Mei L.; Feng S.-S. Theranostics 2014, 4, 660.
[107]
Li Y.; Wang W.; Zhang Y.-T.; Xiao S.-Z.; Lan H.-C.; Geng P. Acta Chim. Sinica 2024, 82, 443 (in Chinese).
[107]
(李燕, 王玮, 张毓婷, 肖述章, 兰海闯, 耿鹏, 化学学报, 2024, 82, 443.)
[108]
Ryu J. H.; Lee S.; Son S.; Kim S. H.; Leary J. F.; Choi K.; Kwon I. C. J. Controlled Release 2014, 190, 477.
[109]
Li X.; Kim J.; Yoon J.; Chen X. Adv. Mater. 2017, 29, 1606857.
[110]
Han R.-X.; Liu Q.-Y.; Lu Y.; Peng J.-R.; Pan M.; Wang G.-H.; Chen W.; Xiao Y.; Yang C.-L.; Qian Z.-Y. Biomaterials 2022, 281, 121328.
[111]
Zhu C.-N.; Chen G.; Tian Z.-Q.; Wang W.; Zhong W.-Q.; Li Z.; Zhang Z.-L.; Pang D.-W. Small 2017, 13, 1602309.
Outlines

/