Article

Preparation of Highly Antimicrobial Composites and Study of Photocatalytic Antimicrobial Properties Driven by LED Light

  • Jian Kang ,
  • Zixuan Shi ,
  • Jingmei Li
Expand
  • School of Life Sciences and Technology, Changchun University of Science and Technology, Changchun 130012, China

Received date: 2024-05-18

  Online published: 2024-08-14

Supported by

Development and Reform Commission of Jilin Province, China(2022C039-5); Science and Technology Research Project of Jilin Provincial Department of Education, China(JJKH20231430KJ)

Abstract

In this study, a Mn-ZnO composite inorganic photocatalytic material with high antimicrobial properties was successfully synthesised using a facile hydrothermal synthesis method. The material was characterised by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectra and ultraviolet-visible diffuse reflection spectra, which confirmed the successful preparation of the material and showed that the introduction of Mn improved the separation efficiency of electron-hole pairs. In order to determine the optimum molar ratio of composites selected for subsequent experiments, this experiment was carried out by comparing the photocatalytic efficiencies of Mn-ZnO composite photocatalytic materials with doping molar ratios of 1%, 3% and 5%. The results demonstrated that the photocatalytic antimicrobial performance of the composites against bacteria was significantly higher than that of single ZnO nanomaterials at 1% Mn doping. In subsequent studies, a 35 W LED light was employed as the excitation light source, and the gradient dilution method and plate colony counting method were used to evaluate the photocatalytic antimicrobial performance of Mn-ZnO composite photocatalytic materials at different concentration gradients (125 mg/L, 250 mg/L, 375 mg/L, 500 mg/L, 1000 mg/L) against three bacterial species, namely, E. coli, S. aureus and Bacillus subtilis. In comparison to the pure ZnO control group, the composites demonstrated antimicrobial effects of 98.33%, 100% and 100% respectively, in a shorter period of time under light conditions with only 125 mg/L. These results indicate that the Mn-ZnO composite photocatalytic materials were more effective against E. coli, S. aureus and Bacillus subtilis than the pure ZnO. This suggests that the Mn-ZnO composite photocatalytic material exhibits high efficiency and broad-spectrum antimicrobial properties, capable of rapidly destroying a multitude of pathogenic microorganisms at a low concentration. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) experiments demonstrated that this highly antimicrobial composite photocatalytic material, which was synthesised by our research group, has good biocompatibility at the experimental concentration. Therefore, this study provides a cheap, environmentally friendly and facile method to prepare photocatalytic materials with high antimicrobial properties. This new class of functional materials may be used in the field of wastewater treatment in the future and has a promising future in practical antimicrobial applications.

Cite this article

Jian Kang , Zixuan Shi , Jingmei Li . Preparation of Highly Antimicrobial Composites and Study of Photocatalytic Antimicrobial Properties Driven by LED Light[J]. Acta Chimica Sinica, 2024 , 82(9) : 962 -970 . DOI: 10.6023/A24050161

References

[1]
Huang L. Biol. Chem. Eng. 2019, 5, 135 (in Chinese).
[1]
(黄亮, 生物化工, 2019, 5, 135.)
[2]
Wen G. Q. J. China Prescr. Drug 2022, 20, 186 (in Chinese).
[2]
(温国琴, 中国处方药, 2022, 20, 186.)
[3]
Vincent J. L.; Sakr Y.; Singer M.; Martin-Loeches I.; Machado F. R.; Marshall J. C.; Finfer S.; Pelosi P.; Brazzi L.; Aditianingsih D.; Timsit J. F.; Du B.; Wittebole X.; Máca J.; Kannan S.; Gorordo-Delsol L. A.; De Waele J. J.; Mehta Y.; Bonten M. J. M.; Khanna A. K.; Kollef M.; Human M.; Angus D. C. JAMA 2020, 323, 1478.
[4]
Lv X. N. Chin. J. Anim. Husbandry Vet. Med. 2018, 5, 51 (in Chinese).
[4]
(吕新年, 畜牧兽医科技信息, 2018, 5, 51.)
[5]
Chen C. L.; Zhai S. Q.; Fu L. Z. Livest. Poult. Industry 2018, 29, 47 (in Chinese).
[5]
(陈春林, 翟少钦, 付利芝, 畜禽业, 2018, 29, 47.)
[6]
Liu T.; Xiao Y. Y. Chin. J. Infect. Control 2023, 22, 995 (in Chinese).
[6]
(刘婷, 肖园园, 中国感染控制杂志, 2023, 22, 995.)
[7]
Prasetya H.; Agustina L.; Rinovian A.; Muttaqin F. IOP Conf. Ser. Earth Environ. Sci. 2022, 986, 12002.
[8]
Song J.; Ashtar M.; Yang Y.; Liu Y.; Chen M.; Cao D. J. Semiconduct. 2023, 44, 111701.
[9]
Zhang L.; Hou S.; Wang T.; Liu S.; Gao X.; Wang C.; Wang G. Small 2022, 18, 2202252.
[10]
Adak M. K.; Mondal D.; Mahato U.; Basak H. K.; Mandal S.; Das A.; Chakraborty B.; Dhak D. Int. J. Hydrogen Energy 2023, 48, 39910.
[11]
Zhu H. W.; Pan Y. S.; Wang Y. Q.; Xiang Y. L.; Han R.; Huang R. J. Nano Res. 2024, 82, 55.
[12]
Kanmani S.; Dileepan A. B. J. Environ. Manage. 2023, 345, 118794.
[13]
Zhao J. J. Shanxi Chem. Industry 2020, 40, 24 (in Chinese).
[13]
(赵巾巾, 山西化工, 2020, 40, 24.)
[14]
Gomez-Gonzalez M. A.; Koronfel M. A.; Goode A. E.; Al-Ejji M.; Voulvoulis N.; Parker J. E.; Quinn P. D.; Scott T. B.; Xie F.; Yallop M. L.; Porter A. E.; Ryan M. P. ACS Nano 2019, 13, 11049.
[15]
Li S.; Sun J.; Guan J. Chin. J. Catal. 2021, 42, 511.
[16]
Ran B.; Ran L.; Wang Z.; Liao J.; Li D.; Chen K.; Cai W.; Hou J.; Peng X. Chem. Rev. 2023, 123, 12371.
[17]
Zhang Q.; Du R.; Tan C.; Chen P.; Yu G.; Deng S. J. Hazard. Mater. 2021, 403, 123582.
[18]
Li B.; Meng X.; Yue Y.; Gao F. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2024, 39, 309.
[19]
Gao Y.; Zhai X.; Zhang Y.; Guan F.; Liu N.; Wang X.; Zhang J.; Hou B.; Duan J. Nano Mater. Sci. 2023, 5, 177.
[20]
Khavar A. H. C.; Khazaee Z.; Mahjoub A. Environ. Sci. Pollut. Res. 2023, 30, 18461.
[21]
Chen Y.; Tang X.; Gao X.; Zhang B.; Luo Y.; Yao X. Ceram. Int. 2019, 45, 15505.
[22]
Baig F.; Zaheer Z.; Khan Z.; Qasim F. Opt. Quantum Electron. 2024, 56, 715.
[23]
Ambujam K.; Sridevi A.; Meivel S.; Chinnusamy T. J. Mater. Sci. Mater. Electron. 2024, 35, 578.
[24]
Fomekong R. L.; Yontchoum P. K.; Ntep T. J. M.; Kamta H. M. T.; Tsobnang P. K. Adv. Energy Sustain. Res. 2024, 5, 2300232.
[25]
Mondal S.; Jamal M.; Ayon S. A.; Anik M. J. F.; Billah M. M. J. Rare Earths 2023, 42, 859.
[26]
Asif N.; Fatima S.; Aziz M. N.; Zaki A.; Fatma T. Bioorg. Chem. 2021, 113, 104999.
[27]
Ponnamma D.; Cabibihan J. J.; Rajan M.; Pethaiah S. S.; Deshmukh K.; Gogoi J. P.; Pasha S. K.; Ahamed M. B.; Krishnegowda J.; Chandrashekar B. N.; Polu A. R.; Cheng C. Mater. Sci. Eng. C 2019, 98, 1210.
[28]
Putri A. E.; Roza L.; Budi S.; Umar A. A.; Fauzia V. Appl. Surf. Sci. 2021, 536, 147847.
[29]
Tata P.; Ganesan R.; Dutta J. R. J. Photochem. Photobiol. B Biol. 2024, 250, 112815.
[30]
Van Embden J.; Gross S.; Kittilstved K. R.; Della Gaspera E. Chem. Rev. 2022, 123, 271.
[31]
Liang S.; Zhang D.; Pu X.; Yao X.; Han R.; Yin J.; Ren X. Sep. Purif. Technol. 2019, 210, 786.
[32]
Liu W.; Zhou M.; Fu H. J. Environ. Chem. Eng. 2023, 11, 110926.
[33]
Liu X.; Yan C.; Wang Y.; Zhang P.; Yan S.; Zhuang J.; Zhu X.; Yang F. Fuel 2023, 349, 128758.
[34]
Lage V. M. A.; Rodríguez-Fernández C.; Vieira F. S.; Da Silva R. T.; Bernardi M. I. B.; De Lima Jr M. M.; Cantarero A.; De Carvalho H. B. Acta Mater. 2023, 259, 119258.
[35]
Aguilar N.; Rozas S.; Escamilla E.; Rumbo C.; Martel S.; Barros R.; Marcos P. A.; Bol A.; Aparicio S. Surf. Interfaces 2024, 46, 103965.
[36]
Vrithias N. R.; Katsara K.; Papoutsakis L.; Papadakis V. M.; Viskadourakis Z.; Remediakis I. N.; Kenanakis G. Materials 2023, 16, 5672.
[37]
Iqbal T.; Afzal M.; Al-Asbahi B. A.; Afsheen S.; Maryam I.; Mushtaq A.; Kausar S.; Ashraf A. Mater. Sci. Semicond. Process. 2024, 173, 108152.
[38]
Senol S.; Yalcin B.; Ozugurlu E.; Arda L. Mater. Res. Express 2020, 7, 015079.
[39]
Aadnan I.; Zegaoui O.; El Mragui A.; Daou I.; Moussout H.; Esteves Da Silva J. C. Catalysts 2022, 12, 1382.
[40]
Vallejo W.; Cantillo A.; Díaz-Uribe C. Heliyon 2023, 9, e20809
[41]
Guo H.; Liu F. H.; Fu X.; Li X. L.; Peng X. Y.; Feng S. L. J. Synth. Cryst. 2020, 49, 1699 (in Chinese).
[41]
(郭慧, 刘方华, 付翔, 李香兰, 彭小英, 冯胜雷, 人工晶体学报, 2020, 49, 1699.)
[42]
Pan H.; Hu Y.; Wu X. W.; Su Q. H. J. Synth. Cryst. 2018, 47, 2498 (in Chinese).
[42]
(潘会, 胡轶, 兀晓文, 苏巧红, 人工晶体学报, 2018, 47, 2498.)
[43]
Güneri E.; Henry J.; G?de F.; ?zpozan N. K. J. Cent. South Univ. 2023, 30, 691.
[44]
Janani F. Z.; Khiar H.; Taoufik N.; Sadiq M.; Favier L.; Ezzat A. O.; Elhalil A.; Barka N. Environ. Sci. Pollut. Res. 2024, 31, 25373.
[45]
Tian B.; Tian R.; Liu S.; Wang Y.; Gai S.; Xie Y.; Yang D.; He F.; Yang P.; Lin J. Adv. Mater. 2023, 35, 2304262.
[46]
Aryee A. A.; Dovi E.; Han R.; Li Z.; Qu L. J. Colloid Interface Sci. 2021, 598, 69.
[47]
Singh N.; Shah K.; Pramanik B. K. Environ. Res. 2023, 233, 116484.
[48]
Raza A.; Shoeb M.; Mashkoor F.; Rahaman S.; Mobin M.; Jeong C.; Ansari M. Y.; Ahmad A. Mater. Chem. Phys. 2022, 286, 126173.
[49]
Xie Q.; Liu X.; Liu H. Superlattices Microstruct. 2020, 139, 106391.
[50]
Ramesh A.; Gavaskar D.; Nagaraju P.; Duvvuri S.; Vanjari S. R. K.; Subrahmanyam C. Appl. Surf. Sci. Adv. 2022, 12, 100349.
[51]
Kononenko V.; Repar N.; Maru?i? N.; Dra?ler B.; Romih T.; Ho?evar S.; Drobne D. Toxicol. Vitro 2017, 40, 256.
[52]
Perumal P.; Sathakkathulla N. A.; Kumaran K.; Ravikumar R.; Selvaraj J. J.; Nagendran V.; Gurusamy M. Sci. Rep. 2024, 14, 2204.
[53]
Gupta J.; Hassan P.; Barick K. Mater. Today Proc. 2021, 42, 926.
[54]
Basnet P.; Samanta D.; Chanu T. I.; Chatterjee S. J. Alloys Compd. 2021, 867, 158870.
[55]
Wang X.; Liu B.; Ma S.; Zhang Y.; Wang L.; Zhu G.; Huang W.; Wang S. Nat. Commun. 2024, 15, 2600.
[56]
Godoy-Gallardo M.; Eckhard U.; Delgado L. M.; De Roo Puente Y. J. D.; Hoyos-Nogués M.; Gil F. J.; Perez R. A. Bioact. Mater. 2021, 6, 4470.
[57]
Li J.; Yuan H.; Zhang Q.; Luo K.; Liu Y.; Hu W.; Xu M.; Xu S. Phys. Chem. Chem. Phys. 2020, 22, 27272.
[58]
Chen J.; Shan M.; Zhu H.; Zhang S.; Li J.; Li L. Environ. Sci. Pollut. Res. 2023, 30, 55498.
Outlines

/