Investigation of Humidity Stabilization Mechanism in CsPbIBr2 Perovskite Solar Cells
Received date: 2024-07-01
Online published: 2024-08-15
Supported by
National Key R&D Program of China(2023YFC3906103); Natural Science Foundation of Hunan Province(2022JJ30757)
The stability and reproducibility of perovskite solar cells (PSCs) are sensitive to fabrication environment, particularly moisture. Understanding the impact of moisture during perovskite film formation is essential for developing effective strategies to enhance performance. Herein, we have systematically investigated the influence of moisture on perovskite film formation as well as photovoltaic properties under varying humidity conditions. It is found that air humidity rapidly alters the physical and thermodynamic properties of the precursor solution during film formation, influencing both the crystallization process and compositional reactions. In the absence of humidity, films primarily forms CsI-PbBr2•DMSO complexes through the reaction of CsI and PbBr2•2DMSO clusters, which transform into desired α-phase after annealing at 280 ℃. Under humid conditions, H2O competes with DMSO to coordinate with PbBr2, forming PbBr2•DMSO--H2O clusters. Additionally, H2O enhances the mobility of CsI within the wet film, leading to a phase transition to α-phase even at 40 ℃. Increased environmental humidity beyond RH 40% further accelerates the precipitation of PbBr2•DMSO--H2O complexes, leading to the formation of 2PbBr2•2DMSO--H2O. The interaction between CsI and these complexes creates larger intermediate crystals that are difficult to transform into 3D perovskites. And the complexes grow away from the substrate because of an additional solid-solid interfacial energy barrier between the crystals and the substrate. Thus, perovskite thin film becomes discontinuous, existing as crystal networks and islands, resulting in decreased coverage of the perovskite films. As a result, short-circuit current density and open-circuit voltage decrease, leading a decline in power conversion efficiency (PCE) from 10.79% at RH 0% down to 0.10% at RH 60%. In the presence of adsorbed water, O2 forms O2− at the surface of perovskite films, reacting with Pb0 defects and its components within the film to produce lead oxide (PbO). This product enhances the stability of the crystal phase, allowing PSCs prepared under RH 40% to maintain 96% of its initial efficiency even after 1656 h in ambient air (RH≤20%). During film aging, moisture in the environment causes α-CsPbIBr2 to initially transform from (100) and (200) facets to (110) facets, and then further to the δ-phase. Therefore, isolating water and oxygen effectively prevents phase transition. The insights gained from this study on the effects of humidity provide valuable guidance for controlling humidity during perovskite film preparation and storage, ultimately contributing to enhanced stability and performance.
Lin Zhang , Hui Zhang , Congtan Zhu , Xueyi Guo , Ying Yang . Investigation of Humidity Stabilization Mechanism in CsPbIBr2 Perovskite Solar Cells[J]. Acta Chimica Sinica, 2024 , 82(9) : 971 -978 . DOI: 10.6023/A24030093
[1] | Green M. A.; Dunlop E. D.; Yoshita M.; Kopidakis N.; Bothe K.; Siefer G.; Hao X. Prog. Photovolt. 2024, 32, 3. |
[2] | Liu D.; Zhang X.; Li Z. Chin. J. Org. Chem. 2024, 44, 1197 (in Chinese). |
[2] | (刘冬, 张晓晔, 李战峰, 有机化学, 2024, 44, 1197.) |
[3] | Zhu H.; Teale S.; Lintangpradipto M. N.; Mahesh S.; Chen B.; McGehee M. D.; Sargent E. H.; Bakr O. M. Nat. Rev. Mater. 2023, 8, 569. |
[4] | Burwig T.; Fra?nzel W.; Pistor P. J. Phys. Chem. Lett. 2018, 9, 4808. |
[5] | Yang Y.; Lin F.; Zhu C.; Chen T.; Ma S.; Luo Y.; Zhu L.; Guo X. Acta Chim. Sinica 2020, 78, 217 (in Chinese). |
[5] | (杨英, 林飞宇, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益, 化学学报, 2020, 78, 217.) |
[6] | Zhu C.; Gao J.; Chen T.; Guo X.; Yang Y. J. Energy Chem. 2023, 83, 445. |
[7] | Lu Y.; Ge Y.; Sui M. Acta Chim. Sinica 2021, 79, 344 (in Chinese). |
[7] | (卢岳, 葛杨, 隋曼龄, 化学学报, 2021, 79, 344.) |
[8] | Lin J.; Lai M.; Dou L.; Kley C. S.; Chen H.; Peng F.; Sun J.; Lu D.; Hawks S. A.; Xie C.; Cui F.; Alivisatos A. P.; Limmer D. T.; Yang P. Nat. Mater. 2018, 17, 261. |
[9] | Qiu J.; Mei X.; Zhang M.; Wang G.; Zou S.; Wen L.; Huang J.; Hua Y.; Zhang X. Angew. Chem., Int. Ed. 2024, 63, e202401751 |
[10] | Montecucco R.; Quadrivi E.; Po R.; Grancini G. Adv. Energy Mater. 2021, 11, 2100672. |
[11] | Xiao H. R.; Zuo C. T.; Yan K. Y.; Jin Z. W.; Cheng Y. H.; Tian H.; Xiao Z.; Liu F. Y.; Ding Y.; Ding L. M. Adv. Energy Mater. 2023, 13, 2300738. |
[12] | Sun J.-K.; Huang S.; Liu X.-Z.; Xu Q.; Zhang Q.-H.; Jiang W.-J.; Xue D.-J.; Xu J.-C.; Ma J.-Y.; Ding J. J. Am. Chem. Soc. 2018, 140, 11705. |
[13] | Lin Z.; Zhang Y.; Gao M.; Steele J. A.; Louisia S.; Yu S.; Quan L. N.; Lin C.-K.; Limmer D. T.; Yang P. Matter 2021, 4, 2392. |
[14] | Lal N. N.; Dkhissi Y.; Li W.; Hou Q.; Cheng Y.-B.; Bach U. Adv. Energy Mater. 2017, 7, 1602761. |
[15] | Guo Q. Y.; Duan J. L.; Zhang J. S.; Zhang Q. Y.; Duan Y. Y.; Yang X. Y.; He B. L.; Zhao Y. Y.; Tang Q. W. Adv. Mater. 2022, 34, 2202301. |
[16] | Chen Z.; Yang M.; Li R.; Zang Z.; Wang H. Adv. Opt. Mater. 2022, 10, 2200802. |
[17] | Wang H.; Yang M.; Cai W.; Zang Z. Nano Lett. 2023, 23, 4479. |
[18] | Chang Q.; An Y.; Cao H.; Pan Y.; Zhao L.; Chen Y.; We Y.; Tsang S.-W.; Yip H.-L.; Sun L.; Yu Z. J. Energy Chem. 2024, 90, 16. |
[19] | Sheng G. Z.; Zhao Y. J.; Zheng J. Y.; Chen L. R.; Qiu B. T.; Zhong L. W.; Zhu Y. Q.; Xu G.; Xiao X. D. Energy. Technol-Ger. 2022, 11, 2200544. |
[20] | Zhu W.; Zhang Q.; Zhang C.; Zhang Z.; Chen D.; Lin Z.; Chang J.; Zhang J.; Hao Y. ACS Appl. Energ. Mater. 2018, 1, 4991. |
[21] | Zhang K.; Wang Z.; Wang G.; Wang J.; Li Y.; Qian W.; Zheng S.; Xiao S.; Yang S. Nat. Commun. 2020, 11, 1006. |
[22] | Fan W.; Deng K.; Shen Y.; Bai Y.; Li L. Angew. Chem., Int. Ed. 2022, 61, e202211259 |
[23] | Liu X. Y.; Tan X. H.; Liu Z. Y.; Ye H. B.; Sun B.; Shi T. L.; Tang Z. R.; Liao G. L. Nano Energy 2019, 56, 184. |
[24] | Zheng Y. C.; Yang S.; Chen X.; Chen Y.; Hou Y.; Yang H. G. Chem. Mater. 2015, 27, 5116. |
[25] | Zhu W.; Zhang Q.; Chen D.; Zhang Z.; Lin Z.; Chang J.; Zhang J.; Zhang C.; Hao Y. Adv. Energy Mater. 2018, 8, 1802080. |
[26] | Peng J.; Kremer F.; Walter D.; Wu Y. L.; Ji Y.; Xiang J.; Liu W. Z.; Duong T.; Shen H. P.; Lu T.; Brink F.; Zhong D. Y.; Li L.; Lem O. L. C.; Liu Y.; Weber K. J.; White T. P.; Catchpole K. R. Nature 2022, 601, 573. |
[27] | Liang J. W.; Hu X. Z.; Wang C.; Liang C.; Chen C.; Xiao M.; Li J. S.; Tao C.; Xing G. C.; Yu R.; Ke W. J.; Fang G. J. Joule 2022, 6, 816. |
[28] | Huang W. X.; Sadhu S.; Ptasinska S. Chem. Mater. 2017, 29, 8478. |
[29] | Liu S. C.; Li Z.; Yang Y.; Wang X.; Chen Y. X.; Xue D. J.; Hu J. S. J. Am. Chem. Soc. 2019, 141, 18075. |
[30] | Zhu C. T.; Lin F. Y.; Zhang L.; Xiao S.; Ma S. P.; Liu S.; Tai Q. D.; Zhu L.; Dai Q. L.; Guo X. Y.; Yang Y. J. Mater. Chem. A 2022, 10, 13124. |
[31] | Anaya M.; Galisteo-Lopez J. F.; Calvo M. E.; Espinos J. P.; Miguez H. J. Phys. Chem. Lett. 2018, 9, 3891. |
[32] | Zhang L.; Sit P. H.-L. J. Mater. Chem. A 2017, 5, 9042. |
[33] | Hu Q.; Li Z.; Tan Z.; Song H.; Ge C.; Niu G.; Han J.; Tang J. Adv. Opt. Mater. 2018, 6, 1700864. |
[34] | Zuo S.; Niu W.; Chu S.; An P.; Huang H.; Zheng L.; Zhao L.; Zhang J. J. Phys. Chem. Lett. 2023, 14, 4876. |
[35] | Lu L.; Li R. Z.; Xu X. Y.; Cheng Y. J. Mol. Model. 2022, 28, 95. |
[36] | Xiao S.; Zhang K.; Zheng S. Z.; Yang S. H. Nanoscale Horizons 2020, 5, 1147. |
[37] | Heo J. H.; Han H. J.; Kim D.; Ahn T. K.; Im S. H. Energ. Environ. Sci. 2015, 8, 1602. |
[38] | Ghahremanirad E.; Almora O.; Suresh S.; Drew A. A.; Chowdhury T. H.; Uhl A. R. Adv. Energy Mater. 2023, 13, 2204370. |
[39] | Ding Y. L.; Yao X.; Zhang X. D.; Wei C. C.; Zhao Y. J. Power Sources 2014, 272, 351. |
[40] | Caprioglio P.; Wolff C. M.; Sandberg O. J.; Armin A.; Rech B.; Albrecht S.; Neher D.; Stolterfoht M. Adv. Energy Mater. 2020, 10, 2000502. |
[41] | Ge R.; Zhao Y. J.; Jiang C. Y.; Zheng J. Y.; Chen L. R.; Zheng Y.; Xu G.; Xiao X. D. Sci. China Mater. 2023, 66, 3261. |
[42] | Yao W. L.; Ling Q.; Dai Q.; Fang S. Y.; Yang C.; Huang L. K.; Liu X. H.; Zhang H. C.; Zhang J.; Zhu Y. J.; Hu Z. Y. ACS Appl. Energ. Mater. 2022, 5, 8092. |
[43] | Yang X.; Ji W.; Chen Q.; Su R.; Zhang L.; Wang A.; Zhang T.; Zhou Y.; Song B. Chin. J. Chem. 2023, 41, 1594. |
[44] | Zhang G.; Zhang J.; Yang Z.; Pan Z.; Rao H.; Zhong X. Adv. Mater. 2022, 34, e2206222 |
/
〈 |
|
〉 |