Communication

Gas Generation in Anode-Free Li-Metal Batteries with Localized High-Concentration Electrolytes

  • Zizhu Guo ,
  • Rui Zhang ,
  • Dan Sun ,
  • Haiyan Wang ,
  • Xiaobing Huang ,
  • Yougen Tang
Expand
  • a College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
    b School of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde 415000, China
; Tel.: 15243665341, 13607315350

Received date: 2024-08-27

  Online published: 2024-09-06

Supported by

National Natural Science Foundation of China(22272205); Postdoctoral Fellowship Program of China Postdoctoral Science Foudation(GZC20233152); Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China.

Abstract

The introduction of localized high-concentration electrolyte (LHCE), which inherits the advanced properties of concentrated electrolytes and exhibits lower viscosity and cost, is one of the important methods to improve the cycling stability of lithium metal anode. Although the similar strategy also has been proposed to extend the durable life of anode-free lithium metal batteries (AF-LMBs), few studies have focused on the electrolyte decomposition reaction and gas production. In this work, a typical LHCE system consisting of lithium bis(fluorosulfonyl)imide (LiFSI) salt, 1,2-dimethoxyethane (DME) solvent and tetrafluoroethyl tetrafluoropropyl ether (HFE) diluter were chosen, and Cu||NCM712 pouch cells were assembled to investigate the effects of LHCE concentration (0.7, 1.2, 1.7 and 2.3 mol/L), working temperature (25 and 45 ℃) and charging cutoff voltage (3.8 and 4.3 V) on the gas production of AF-LMB systems. Combined with gas chromatography, Raman spectroscopy and electrochemical tests, it is found that the concentration of lithium salt is a significant factor affecting the cycle life and gas production volume. The solvation structure gradually evolves and the number of free solvent molecules in LHCE reduces as the concentration of lithium salt increases, inhibiting the oxidation decomposition of electrolyte and gas production of battery. Moreover, the electrolyte decomposition is also dependent with the variety of cathode material. In contrast with lithium iron phosphate (LiFePO4) cathode, NCM712 cathode results in faster capacity decay of the full-cell and higher gas volume, which might be ascribed to the transition metal elements with the catalytic effect. Meanwhile, scanning electron microscope images indicate uniform and dense lithium deposition on the Cu foil, and X-ray photoelectron spectroscopy tests also reveal that more inorganic solid electrolyte interface (SEI) components are formed on the surface of lithium metal, which serves as the excellent protective layer and is beneficial to suppressing the side reaction. This work is expected to provide guidance for the gas production research of other ether-based LHCE systems.

Cite this article

Zizhu Guo , Rui Zhang , Dan Sun , Haiyan Wang , Xiaobing Huang , Yougen Tang . Gas Generation in Anode-Free Li-Metal Batteries with Localized High-Concentration Electrolytes[J]. Acta Chimica Sinica, 2024 , 82(9) : 919 -924 . DOI: 10.6023/A24050167

References

[1]
Weber R.; Genovese M.; Louli A.; Hames S.; Martin C.; Hill I. G.; Dahn J. Nat. Energy 2019, 4, 683.
[2]
Kwon H.; Kim H.; Hwang J.; Oh W.; Roh Y.; Shin D.; Kim H. T. Nat. Energy 2019, 9, 57.
[3]
Wang J.; Huang W.; Pei A.; Li Y.; Shi F.; Yu X.; Cui Y. Nat. Energy 2019, 4, 664.
[4]
Feng S. S.; Liu X.-B.; Guo S.-L.; He B.-B.; Gao Z.-G.; Chen M.-Y.; Gong J.-B. CIESC J. 2022, 73, 97 (in Chinese).
[4]
(丰闪闪, 刘晓斌, 郭石麟, 何兵兵, 高振国, 陈明洋, 龚俊波, 化工学报, 2022, 73, 97.)
[5]
Albertus P.; Babinec S.; Litzelman S.; Newman A. Nat. Energy 2018, 3, 16.
[6]
Wang K.; Li X.; Wang N.; Yang Z.; Gao J.; He J.; Zhang Y.; Huang C. ACS Appl. Energy Mater. 2020, 3, 2623.
[7]
Qian J.; Adams B.-D.; Zheng J.; Xu W.; Henderson W. A.; Wang J.; Bowden M. E.; Xu S.; Hu J.; Zhang J.-G. Adv. Funct. Mater. 2016, 26, 7094.
[8]
Li Y.; Bu M.; Mu C.; Yang C. Mater. Lett. 2024, 355, 135449.
[9]
Li P.; Kim H.; Ming J.; Jung H. G.; Belharouak I.; Sun Y.-K. eScience 2021, 1, 3.
[10]
Lin L.; Qin K.; Hu Y.-S.; Li H.; Huang X.; Suo L.; Chen L. Adv. Mater. 2022, 34, 2110323.
[11]
Lee Y.; Lee T. K.; Kim S.; Lee J.; Ahn Y.; Kim K.; Ma H.; Park G.; Lee S.-M.; Kwak S. K. Nano Energy 2020, 67, 104309.
[12]
Wu B.; Chen C.; Raijmakers L. H.; Liu J.; Danilov D. L.; Eichel R.-A.; Notten P. H. Energy Stor. Mater. 2023, 57, 508.
[13]
Chen J.; Xiang J.; Chen X.; Yuan L.; Li Z.; Huang Y. Energy Stor. Mater. 2020, 30, 179.
[14]
Zhuang R.; Xu X.-S.; Qu C.-Z.; Xu S.-Q.; Yu T.; Wang H.-Q.; Xu F. Acta Chim. Sinica 2021, 79, 378 (in Chinese).
[14]
(庄容, 许潇洒, 曲昌镇, 徐顺奇, 于涛, 王洪强, 徐飞, 化学学报, 2021, 79, 378.)
[15]
He Z.-X.; Chen Y.-W.; Huang F.-Y.; Jie Y.-L.; Li X.-P.; Cao R.-G.; Jiao S.-H. Acta Phys.-Chim. Sin. 2022, 38, 2205005 (in Chinese).
[15]
(何子旭, 陈亚威, 黄凡洋, 揭育林, 李新鹏, 曹瑞国, 焦淑红, 物理化学学报, 2022, 38, 2205005.)
[16]
Hagos T. T.; Thirumalraj B.; Huang C.-J.; Abrha L. H.; Hagos T. M.; Berhe G. B.; Bezabh H. K.; Cherng J.; Chiu S.-F.; Su W.-N. ACS Appl. Mater. Interfaces 2019, 11, 9955.
[17]
Hagos T. M.; Hagos T. T.; Bezabh H. K.; Berhe G. B.; Abrha L. H.; Chiu S.-F.; Huang C.-J.; Su W.-N.; Dai H.; Hwang B. J. ACS Appl. Energy Mater. 2020, 3, 10722.
[18]
Logan E.; Louli A.; Genovese M.; Trussler S.; Dahn J. J. Electrochem. Soc. 2021, 168, 060527.
[19]
Kwak W. J.; Lim H. S.; Gao P.; Feng R.; Chae S.; Zhong L.; Read J.; Engelhard M. H.; Xu W.; Zhang J. G. Adv. Funct. Mater. 2021, 31, 2002927.
[20]
Liu Q.; Liu Y.; Chen Z.; Ma Q.; Hong Y.; Wang J.; Xu Y.; Zhao W.; Hu Z.; Hong X. Adv. Funct. Mater. 2023, 33, 2209725.
[21]
Jia H.; Zou L.; Gao P.; Cao X.; Zhao W.; He Y.; Engelhard M. H.; Burton S. D.; Wang H.; Ren X. Adv. Energy Mater. 2019, 9, 1900784.
[22]
Lu G.-X.; Nai J.-W.; Yuan H.-D.; Wang J.-C.; Zheng J.-H.; Ju Z.-J.; Jin C.-B.; Wang Y.; Liu T.-F.; Liu Y.-J.; Tao X.-Y. ACS Nano 2022, 16, 9883.
[23]
Ren X.; Zou L.; Cao X.; Engelhard M.; Liu W.; Burton S. D.; Lee H.; Niu C.; Matthews B.; Zhu Z.; Wang C.; Arey B.; Xiao J.; Liu J.; Zhang J.; Xu W. Joule 2019, 3, 1662.
[24]
Qiao Y.; Yang H.; Chang Z.; Deng H.; Li X.; Zhou H. Nat. Energy 2021, 6, 653.
[25]
Jie Y.; Wang S.; Weng S.; Liu Y.; Yang M.; Tang C.; Li X.; Zhang Z.; Zhang Y.; Chen Y.; Huang F.; Xu Y.; Li W.; Guo Y.; He Z.; Ren X.; Lu Y.; Yang K.; Cao S.; Lin H.; Cao R.; Yan P.; Cheng T.; Wang X.; Jiao S.; Xu D. Nat. Energy 2024, 9, 987.
[26]
Wang H.-S.; Yu Z.-A.; Kong X.; Sang C. K.; David T. B.; Qin J.; Bao Z.-N.; Cui Y. Joule 2022, 6, 588.
Outlines

/