Analysis of Growth Mode of Perovskite Crystals by Drop Casting Method at Different Quenching Temperatures
Received date: 2024-07-22
Online published: 2024-09-14
Supported by
National Natural Science Foundation of China(52476073)
The preparation of large-area dense perovskite thin films is currently a popular direction in the research of perovskite solar cells. Researchers use methods such as assisted liquid film ordered evaporation and adjusting the evaporation temperature and solution composition of perovskite solutions to ensure the formation of smooth, dense, and uniform crystal morphology in perovskite films.Despite detailed studies on the conditions for the formation of needle-shaped and layered crystals in perovskite thin films, there remains a gap in understanding the impact of increased evaporation rates on crystal growth morphology and the laws governing the transition from needle-shaped crystals to dense layered crystals in perovskite thin films. Therefore, revealing the crystal growth mode of perovskite films is crucial for achieving dense perovskite films. This study utilized the drop casting method to prepare perovskite thin films. A perovskite solution was dripped onto a preheated substrate to obtain a stable and spreading perovskite precursor liquid film, which was then evaporated and crystallized at different quenching temperatures to prepare perovskite thin films. Firstly, this study recorded the growth process of needle-shaped and layered crystals in perovskite thin films during liquid film quenching and evaporation using an optical microscope. During this process, adjusting the microscope to pre-focus and minimizing the influence of external light sources during video recording can enhance the reproducibility of experimental results. Conduct an additional annealing process for the experimental group at temperatures below 100 ℃ to eliminate residual solvents and disintegrate complexes, a process that will not alter the crystal morphology. Through scanning electron microscope (SEM) testing, we investigated different crystal growth modes and compared the formation temperature and crystallinity of each crystal morphology with X-ray diffraction (XRD) testing. This article summarizes how the structure of perovskite crystals evolves with increasing quenching temperature, and speculates that the driving force of crystallization plays a key role in the mechanism of crystal morphology change. The research results indicate that with the increase of quenching temperature and crystallization rate, the perovskite film crystals transform from dendritic to spherical, and the morphology of the film changes from needle-like pores to smooth and dense. In addition, the uniformity of the film increases with the increase of quenching temperature. This transformation is crucial for enhancing the efficiency and stability of perovskite solar cells, as dense and uniform films are essential for optimal performance.
Key words: drop-casting; perovskite film; crystallization process; crystal nucleus
Shengzong Xiao , Xiongwen Xu . Analysis of Growth Mode of Perovskite Crystals by Drop Casting Method at Different Quenching Temperatures[J]. Acta Chimica Sinica, 2024 , 82(10) : 1031 -1038 . DOI: 10.6023/A24070220
[1] | Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Nat. Rev. Mater. 2017, 2 16099. |
[2] | Huang, J.; Yuan, Y.; Shao, Y.; Yan, Y. Nat. Rev. Mater. 2017, 2 DOI: 10.1038/natrevmats.2017.42. |
[3] | Park, N.; Gr?tzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Nat. Energy. 2016, 1 16152. |
[4] | Kim, J.; Jung, Y.; Heo, Y.; Hwang, K.; Qin, T.; Kim, D.; Vak, D. Sol. Energy Mater. Sol. Cells 2018, 179 80. |
[5] | Lee, S.; Nam, J. AIChE J. 2015, 61 1745. |
[6] | Li, J.; Munir, R.; Fan, Y.; Niu, T.; Liu, Y.; Zhong, Y.; Yang, Z.; Tian, Y.; Liu, B.; Sun, J.; Smilgies, D.; Thoroddsen, S.; Amassian, A.; Zhao, K.; Liu, S. F. Joule 2018, 2 1313. |
[7] | Kong, W.; Wang, G.; Zheng, J.; Hu, H.; Chen, H.; Li, Y.; Hu, M.; Zhou, X.; Liu, C.; Chandrashekar, B. N.; Amini, A.; Wang, J.; Xu, B.; Cheng, C. Sol. RRL 2018, 2 1700214. |
[8] | Jung, Y. S.; Hwang, K.; Heo, Y. J.; Kim, J. E.; Vak, D.; Kim, D. Y. Adv. Opt. Mater. 2018, 6 1701182. |
[9] | Kim, J. H.; Williams, S. T.; Cho, N.; Chueh, C. C.; Jen, A. K. Y. Adv. Energy Mater. 2015, 5 1401229. |
[10] | Razza, S.; Di Giacomo, F.; Matteocci, F.; Cinà, L.; Palma, A. L.; Casaluci, S.; Cameron, P.; D'Epifanio, A.; Licoccia, S.; Reale, A.; Brown, T. M.; Di Carlo, A. J. Power Sources 2015, 277 286. |
[11] | Zhong, Y.; Munir, R.; Li, J.; Tang, M.; Niazi, M. R.; Smilgies, D.; Zhao, K.; Amassian, A. ACS Energy Lett. 2018, 3 1078. |
[12] | Liang, Z.-Q.; Li, Y.-Y.; Meng, N.; Xu, Z.-J.; Wang, Z.; Zhao, S.-L.; Qiao, B.; Liang, Z.-Q.; Song, D.-D.; Xu, Z. Micro/Nano Electronics and Intelligent Manufacturing 2023, (5), 53 (in Chinese). |
[12] | (梁振群, 李垚垚, 孟宁, 徐泽江, 王振, 赵谡玲, 乔泊, 梁志琴, 宋丹丹, 徐征, 微纳电子与智能制造, 2023, (5), 53.) |
[13] | Jiang, R.-X.; Ke, B.-C.; Zhu, Z.-W.; Tong, J.-H.; Bu, T.-L.; Huang, F.-Z. J. Chin. Ceram. Soc. 2023, 51 2287 (in Chinese). |
[13] | (蒋瑞轩, 柯秉灿, 朱泽伟, 童金辉, 卜童乐, 黄福志, 硅酸盐学报, 2023, 51 2287.) |
[14] | Huang, Z.; Duan, X.; Zhang, Y.; Hu, X.; Tan, L.; Chen, Y. Sol. Energy Mater. Sol. Cells. 2016, 155 166. |
[15] | Zeng, Y.-X.; Chen, J.-L.; Tian, Q.-Q.; Wu, Z.-H.; Ju, J.-Y.; Zhao, W. Acta Energ. Sol. Sin. 2024, 45 72 (in Chinese). |
[15] | (曾雨熙, 陈建林, 田俏俏, 武子寒, 俱佳尧, 赵威, 太阳能学报, 2024, 45 72.) |
[16] | Li, Z.-X.; Feng, X.-Z.; Chen, X.-G.; Liu, X.-P.; Dai, S.-Y.; Cai, M.-L. Acta Energ. Sol. Sin. 2024, 45 30 (in Chinese). |
[16] | (李卓芯, 冯旭铮, 陈香港, 刘雪朋, 戴松元, 蔡墨朗, 太阳能学报, 2024, 45 30.) |
[17] | Dai, X.; Chen, S.; Jiao, H.; Zhao, L.; Wang, K.; Ni, Z.; Yu, Z.; Chen, B.; Gao, Y.; Huang, J. Nat. Energy. 2022, 7 923. |
[18] | Zuo, C.; Ding, L. Angew. Chem. Int. Ed. 2021, 60 11242. |
[19] | Ahn, N.; Son, D.; Jang, I.; Kang, S. M.; Choi, M.; Park, N. J. Am. Chem. Soc. 2015, 137 8696. |
[20] | Zeng, L.; Chen, S.; Forberich, K.; Brabec, C. J.; Mai, Y.; Guo, F. Energy Environ. Sci. 2020, 13 4469. |
[21] | Yang, Z.; Zhang, W.; Wu, S.; Zhu, H.; Liu, Z.; Liu, Z.; Jiang, Z.; Chen, R.; Zhou, J.; Lu, Q.; Xiao, Z.; Shi, L.; Chen, H.; Ono, L. K.; Zhang, S.; Zhang, Y.; Qi, Y.; Han, L.; Chen, W. Sci. Adv. 2021, 7, eabg3749. |
[22] | Zhang, G.; Ding, B.; Ding, Y.; Liu, Y.; Yu, C.; Zeng, L.; Wang, Y.; Zhang, X.; Liu, M.; Tian, Q.; Fan, B.; Liu, Q.; Yang, G.; Nazeeruddin, M. K.; Chen, B. Sci. Adv. 2024, 10, eadl6398. |
[23] | Chen, Y.-B.; Zheng, D.-X.; Wang, N.; Liu, J.-S.; Yu, F.-Y.; Wu, S.-J.; Liu, S.-Z.; Li, Z.-P. Acta Chim. Sinica 2024, 82 987 (in Chinese). |
[23] | (陈宇波, 郑德旭, 王楠, 刘吉双, 于凤阳, 吴飒建, 刘生忠, 李智鹏, 化学学报, 2024, 82 987.) |
[24] | Shtukenberg, A. G.; Punin, Y. O.; Gunn, E.; Kahr, B. Chem. Rev. 2012, 112 1805. |
[25] | Wang, X.-Y.; Xu, X.-W. Acta Chim. Sinica 2024, 82 865 (in Chinese). |
[25] | (王馨雨, 许雄文, 化学学报, 2024, 82 865.) |
/
〈 |
|
〉 |