Review

Conformal Two-Dimensional Materials: Preparation and Applications

  • Weitao Liu ,
  • Zhansheng Gao ,
  • Mingju Huang ,
  • Zhongfan Liu ,
  • Ke Chen
Expand
  • a Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, School of Future Technology, Henan University, Kaifeng 475004, China
    b College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
    c Beijing Graphene Institute, Beijing 100095, China
    d Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China

Received date: 2024-07-17

  Online published: 2024-10-09

Supported by

National Natural Science Foundation of China(52272038); National Natural Science Foundation of China(22309042); National Young Top-Notch Talents of Ten-Thousand Talents Program and the Zhongyuan Talents Program of Henan Province

Abstract

Conformal two-dimensional materials refer to an atomically-thin layered material that can closely adhere on the surface of any substrate. It is tightly coated on the substrate surface like a thin film, along with the contour of the substrate surface, and thus forms a new type of functional composite structural material. This conformal structural material not only inherits the original surface morphological characteristics of the substrate, but also endows the substrate with novel physical properties of two-dimensional materials to achieve new functions and stimulate new physical and chemical effects under the interaction between two-dimensional materials and the substrate. The introduction of special substrate structures can enable two-dimensional materials to transcend the limitations of two-dimensional space. Combining the planar structure of two-dimensional materials with the arbitrary curved structure of the substrate is an important way to enhance interactions between two-dimensional materials and the surrounding environment, greatly expanding the application fields of two-dimensional materials, and may even achieve the killer applications. On the basis of proposing the concept of conformal two-dimensional materials, this article first elucidates the mechanism of conformal growth of two-dimensional materials, reveals the influence of substrate features and structures on the conformal growth and conformity of two-dimensional materials, as well as explores the thermodynamic factors and spatial equilibrium conditions that affect material growth behaviors. Second, it classifies and summarizes current progress on the preparation methods, properties, and applications of conformal two-dimensional materials represented by open and confined structures of substrates. Finally, the challenges and future development directions in this field are discussed.

Cite this article

Weitao Liu , Zhansheng Gao , Mingju Huang , Zhongfan Liu , Ke Chen . Conformal Two-Dimensional Materials: Preparation and Applications[J]. Acta Chimica Sinica, 2024 , 82(11) : 1162 -1179 . DOI: 10.6023/A24070219

References

[1]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.-e.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
[2]
Li, X.; Yu, J.; Wageh, S.; Al‐Ghamdi, A. A.; Xie, J. Small 2016, 12, 6640.
[3]
Geim, A. K. Science 2009, 324, 1530.
[4]
Seabra, A. B.; Paula, A. J.; de Lima, R.; Alves, O. L.; Duran, N. Chem. Res. Toxicol. 2014, 27, 159.
[5]
Liu, Y.; Duan, X.; Huang, Y.; Duan, X. Chem. Soc. Rev. 2018, 47, 6388.
[6]
Iqbal, M.; Elahi, E.; Amin, A.; Hussain, G.; Aftab, S. Superlattices Microstruct. 2020, 137, 106350.
[7]
Wu, D.; Guo, C.; Zeng, L.; Ren, X.; Shi, Z.; Wen, L.; Chen, Q.; Zhang, M.; Li, X. J.; Shan, C.-X.; Jie, J. Light-Sci. Appl. 2023, 12, 5.
[8]
Chin, H.-T.; Hofmann, M.; Huang, S.-Y.; Yao, S.-F.; Lee, J.-J.; Chen, C.-C.; Ting, C.-C.; Hsieh, Y.-P. npj 2D Mater. Appl. 2021, 5, 28.
[9]
Moon, J.-Y.; Kim, D.-H.; Kim, S.-I.; Hwang, H.-S.; Choi, J.-H.; Hyeong, S.-K.; Ghods, S.; Park, H. G.; Kim, E.-T.; Bae, S. Matter 2022, 5, 3935.
[10]
Ciarrocchi, A.; Avsar, A.; Ovchinnikov, D.; Kis, A. Nat. Commun. 2018, 9, 919.
[11]
Ji, H. G.; Solis‐Fernandez, P.; Yoshimura, D.; Maruyama, M.; Endo, T.; Miyata, Y.; Okada, S.; Ago, H. Adv. Mater. 2019, 31, 1903613.
[12]
Chen, P.; Pan, J.; Gao, W.; Wan, B.; Kong, X.; Cheng, Y.; Liu, K.; Du, S.; Ji, W.; Pan, C. Adv. Mater. 2022, 34, 2108615.
[13]
Boyd, D.; Lin, W.-H.; Hsu, C.-C.; Teague, M.; Chen, C.-C.; Lo, Y.-Y.; Chan, W.-Y.; Su, W.-B.; Cheng, T.-C.; Chang, C.-S. Nat. Commun. 2015, 6, 6620.
[14]
Wang, X.; Shi, G. Energy Environ. Sci. 2015, 8, 790.
[15]
Han, T.-H.; Kim, H.; Kwon, S.-J.; Lee, T.-W. Adv. Mater. Sci. Eng. 2017, 118, 1.
[16]
Gwon, H.; Kim, H.-S.; Lee, K. U.; Seo, D.-H.; Park, Y. C.; Lee, Y.-S.; Ahn, B. T.; Kang, K. Energy Environ. Sci. 2011, 4, 1277.
[17]
Liao, L.; Peng, H.; Liu, Z. J. Am. Chem. Soc. 2014, 136, 12194.
[18]
Sun, P.; Xiong, W.; Bera, A.; Timokhin, I.; Wu, Z.; Mishchenko, A.; Sellers, M.; Liu, B.; Cheng, H.; Janzen, E. PNAS 2023, 120, e2300481120.
[19]
Fu, W.; Jiang, L.; van Geest, E. P.; Lima, L. M.; Schneider, G. F. Adv. Mater. 2017, 29, 1603610.
[20]
Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. ACS Nano 2014, 8, 1102.
[21]
Liu, B.; Abbas, A.; Zhou, C. Adv. Electronic. Mater. 2017, 3, 1700045.
[22]
Liao, W.; Zhao, S.; Li, F.; Wang, C.; Ge, Y.; Wang, H.; Wang, S.; Zhang, H. Nanoscale Horiz. 2020, 5, 787.
[23]
Chaves, A.; Azadani, J. G.; Alsalman, H.; Da Costa, D.; Frisenda, R.; Chaves, A.; Song, S. H.; Kim, Y. D.; He, D.; Zhou, J. npj 2D Mater. 2020, 4, 29.
[24]
Kang, S.; Lee, D.; Kim, J.; Capasso, A.; Kang, H. S.; Park, J.-W.; Lee, C.-H.; Lee, G.-H. 2D Mater. 2020, 7, 022003.
[25]
Shrivastava, M.; Ramgopal Rao, V. Nano Lett. 2021, 21, 6359.
[26]
Nakano, M.; Wang, Y.; Kashiwabara, Y.; Matsuoka, H.; Iwasa, Y. Nano Lett. 2017, 17, 5595.
[27]
Ma, Y.; Kolekar, S.; Coy Diaz, H.; Aprojanz, J.; Miccoli, I.; Tegenkamp, C.; Batzill, M. ACS Nano 2017, 11, 5130.
[28]
Poh, S. M.; Zhao, X. X.; Tan, S. J. R.; Fu, D. Y.; Fei, W. W.; Chu, L. Q.; Dan, J. D.; Zhou, W.; Pennycook, S. J.; Neto, A. H. C.; Loh, K. P. ACS Nano 2018, 12, 7562.
[29]
Poh, S. M.; Tan, S. J. R.; Zhao, X. X.; Chen, Z. X.; Abdelwahab, I.; Fu, D. Y.; Xu, H.; Bao, Y.; Zhou, W.; Loh, K. P. Adv. Mater. 2017, 29, 1605641.
[30]
Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. Nat. Nanotechnol. 2008, 3, 563.
[31]
Ciesielski, A.; Samorì, P. Chem. Soc. Rev. 2014, 43, 381.
[32]
Li, Z.; Young, R. J.; Backes, C.; Zhao, W.; Zhang, X.; Zhukov, A. A.; Tillotson, E.; Conlan, A. P.; Ding, F.; Haigh, S. J. ACS Nano 2020, 14, 10976.
[33]
Coleman, J. N. Adv. Funct. Mater. 2009, 19, 3680.
[34]
Grayfer, E. D.; Kozlova, M. N.; Fedorov, V. E. Adv. Colloid Interface Sci. 2017, 245, 40.
[35]
Zhang, W.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. Adv. Mater. 2013, 25, 3456.
[36]
Deng, B.; Liu, Z.; Peng, H. Adv. Mater. 2019, 31, 1800996.
[37]
Deokar, G.; Avila, J.; Razado-Colambo, I.; Codron, J.-L.; Boyaval, C.; Galopin, E.; Asensio, M.-C.; Vignaud, D. Carbon 2015, 89, 82.
[38]
Zhang, J.; Wang, F.; Shenoy, V. B.; Tang, M.; Lou, J. Mater Today 2020, 40, 132.
[39]
Zhu, D.; Shu, H.; Jiang, F.; Lv, D.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. npj 2D Mater. Appl. 2017, 1, 8.
[40]
Dong, J.; Zhang, L.; Ding, F. Adv. Mater. 2019, 31, 1801583.
[41]
Zhou, X.; Zhuge, F.; Wang, H.; Zhai, T. Chin. J. Chem. 2023, 41, 825.
[42]
Xu, X.; Chen, Y.; Liu, P.; Luo, H.; Li, Z.; Li, D.; Wang, H.; Song, X.; Wu, J.; Zhou, X.; Zhai, T. Nat. Commun. 2024, 15, 4368.
[43]
Liu, G.; Sun, Z.; Su, J. Chin. Sci. Bull. 2021, 66, 4036.
[44]
Xu, X.; Zhang, Z.; Dong, J.; Yi, D.; Niu, J.; Wu, M.; Lin, L.; Yin, R.; Li, M.; Zhou, J. Chin. Sci. Bull. 2017, 62, 1074.
[45]
Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y. Nat. Commun. 2019, 10, 1912.
[46]
Gao, L.; Guest, J. R.; Guisinger, N. P. Nano Lett. 2010, 10, 3512.
[47]
Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Nano Lett. 2011, 11, 4547.
[48]
Huang, M.; Ruoff, R. S. Acc. Chem. Res. 2020, 53, 800.
[49]
Sutter, P.; Sadowski, J. T.; Sutter, E. Phys. Rev. B 2009, 80, 245411.
[50]
Barin, G. B.; Song, Y.; de Fatima Gimenez, I.; Souza Filho, A. G.; Barreto, L. S.; Kong, J. Carbon 2015, 84, 82.
[51]
Zhuang, B.; Li, S.; Li, S.; Yin, J. Carbon 2021, 173, 609.
[52]
Zhan, Y.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Small 2011, 8, 966.
[53]
Huang, M.; Deng, B.; Dong, F.; Zhang, L.; Zhang, Z.; Chen, P. Small Methods 2021, 5, 2001213.
[54]
Li, S.; Ouyang, D.; Zhang, N.; Zhang, Y.; Murthy, A.; Li, Y.; Liu, S.; Zhai, T. Adv. Mater. 2023, 35, 2211855.
[55]
Yan, Z.; Peng, Z.; Tour, J. M. Acc. Chem. Res. 2014, 47, 1327.
[56]
Ji, Q.; Zhang, Y.; Gao, T.; Zhang, Y.; Ma, D.; Liu, M.; Chen, Y.; Qiao, X.; Tan, P. H.; Kan, M. Nano Lett. 2013, 13, 3870.
[57]
Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lopez-Sanchez, O.; Krasnozhon, D.; Chen, M. W.; Gillet, P.; Morral, A. F. I.; Radenovic, A.; Kis, A. ACS Nano 2014, 9, 4611.
[58]
Ji, Q.; Kan, M.; Zhang, Y.; Guo, Y.; Ma, D.; Shi, J.; Sun, Q.; Chen, Q.; Zhang, Y.; Liu, Z. Nano Lett. 2015, 15, 198.
[59]
Yang, P.; Wang, D.; Zhao, X.; Quan, W.; Jiang, Q.; Li, X.; Tang, B.; Hu, J.; Zhu, L.; Pan, S. Nat. Commun. 2022, 13, 3238.
[60]
Ju, M.; Liang, X.; Liu, J.; Zhou, L.; Liu, Z.; Mendes, R. G.; Ru?mmeli, M. H.; Fu, L. Chem. Mater. 2017, 29, 6095.
[61]
Hoffman, J. J. D. J. Chem. Phys. 1958, 29, 1192.
[62]
Anwar, J.; Zahn, D. Angew. Chem. Int. Ed. 2011, 50, 1996.
[63]
Amini, S.; Abbaschian, R. Carbon 2013, 51, 110.
[64]
Jung, Y. J.; Wei; Vajtai, R.; Ajayan, P. M.; Homma, Y.; Prabhakaran, K.; Ogino, T. Nano Lett. 2003, 3, 561.
[65]
Jackson, K. Adv. Mater. Sci. Eng. 1984, 65, 7.
[66]
Nancollas, G.; Purdie, N. Q. Rev. Chem. Soc. 1964, 18, 1.
[67]
Undabeytia, T.; Nir, S.; Rytwo, G.; Serban, C.; Morillo, E.; Maqueda, C. Environ. Sci. Technol. 2002, 36, 2677.
[68]
Coraux, J.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; Zu Heringdorf, F.-J. M.; Van Gastel, R.; Poelsema, B.; Michely, T. New J. Phys. 2009, 11, 023006.
[69]
Wu, P.; Zhang, W. H.; Li, Z. Y.; Yang, J. L. Small 2014, 10, 2136.
[70]
Zhang, X.; Huangfu, L.; Gu, Z.; Xiao, S.; Zhou, J.; Nan, H.; Gu, X.; Ostrikov, K. Small 2021, 17, 2007312.
[71]
Yan, C.; Gan, L.; Zhou, X.; Guo, J.; Huang, W.; Huang, J.; Jin, B.; Xiong, J.; Zhai, T.; Li, Y. Adv. Funct. Mater. 2017, 27, 1702918.
[72]
Chen, C.-C.; Kuo, C.-J.; Liao, C.-D.; Chang, C.-F.; Tseng, C.-A.; Liu, C.-R.; Chen, Y.-T. Chem. Mater. 2015, 27, 6249.
[73]
Kundu, P. K.; Cohen, I. M.; Dowling, D. R. In Fluid mechanics, Ed.: Merken, S., Elsevier, London, 2015, pp. 1-15.
[74]
Munson, B. R.; Young, D.; Okiishi, T. Bernoulli Eqn. 2016, 23, 139.
[75]
Knudsen, M.; Partington, J. R. J. Phys. Chem. 2002, 39, 307.
[76]
Emyr, A.; Moelwyn, H. In Physical Chemistry, Ed.: Wheeler, D. R., Cambridge University Press, Cambridge, 2015, pp. 4-10.
[77]
Halliday, D.; Resnick, R.; Krane, K. S. In Physics, Ed.: Sara Whight, H. N., Wiley, New York, 2002, pp. 635-652.
[78]
Rosenberger, F. E. In Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts, Ed.: Cardona, M., Springer Science & Business Media, Stuttgart, 2012, pp. 226-234.
[79]
GokoGlu, S. A. J. Electrochem. Soc. 1988, 135, 1562.
[80]
Hitchman, M. L. J. Cryst. Growth. 1980, 48, 394.
[81]
Sneed, B. T.; Brodsky, C. N.; Kuo, C. H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W.; Tsung, C. K. J. Am. Chem. Soc. 2013, 135, 14691.
[82]
Zhang, L.; Roling, L. T.; Wang, X.; Vara, M.; Chi, M. F.; Liu, J. Y.; Choi, S. I.; Park, J.; Herron, J. A.; Xie, Z. X.; Mavrikakis, M.; Xia, Y. N. Science 2015, 349, 412.
[83]
Ye, H.; Wang, Q.; Catalano, M.; Lu, N.; Vermeylen, J.; Kim, M. J.; Liu, Y.; Sun, Y.; Xia, X. Nano Lett. 2016, 16, 2812.
[84]
Wang, Z.; Luan, D.; Boey, F. Y. C.; Lou, X. W. J. Am. Chem. Soc. 2011, 133, 4738.
[85]
Kuo, C. H.; Chu, Y. T.; Song, Y. F.; Huang, M. H. Adv. Funct. Mater. 2011, 21, 792.
[86]
Lopez-Ortega, A.; Roca, A. G.; Torruella, P.; Petrecca, M.; Estrade, S.; Peiro, F.; Puntes, V.; Nogues, J. Chem. Mater. 2016, 28, 8025.
[87]
Peng, S.; Sun, S. Angew. Chem. Int. Ed. 2007, 46, 4155.
[88]
Zhang, Y.; Chen, S.; Radjenovic, P.; Bodappa, N.; Zhang, H.; Yang, Z. L.; Tian, Z.; Li, J. F. Anal. Bioanal.Chem. 2019, 91, 5316.
[89]
Hwang, S. J.; Kim, S. K.; Lee, J. G.; Lee, S. C.; Jang, J. H.; Kim, P.; Lim, T. H.; Sung, Y. E.; Yoo, S. J. J. Am. Chem. Soc. 2012, 134, 19508.
[90]
Kong, D.; Wang, H.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Nano Lett. 2013, 13, 1341.
[91]
Peng, Z.; Jia, D.; Al-Enizi, A. M.; Elzatahry, A. A.; Zheng, G. Adv. Energy. Mater. 2015, 5, 1.
[92]
Zhang, Q.; Tan, S.; Mendes, R. G.; Sun, Z.; Chen, Y.; Kong, X.; Xue, Y.; Ruemmeli, M. H.; Wu, X.; Chen, S. Adv. Mater. 2016, 28, 2616.
[93]
Tong, X.; Li, Y.; Ruan, Q.; Pang, N.; Zhou, Y.; Wu, D.; Xiong, D.; Xu, S.; Wang, L.; Chu, P. K. Adv. Sci. Lett. 2022, 9, 2104774.
[94]
Faber, M. S.; Dziedzic, R.; Lukowski, M. A.; Kaiser, N. S.; Ding, Q.; Jin, S. J. Am. Chem. Soc. 2014, 136, 10053.
[95]
Mi, Y.; Zhang, Z.; Zhao, L.; Zhang, S.; Chen, J.; Ji, Q.; Shi, J.; Zhou, X.; Wang, R.; Shi, J. Small 2017, 13, 1701694.
[96]
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. Nature 2010, 464, 392.
[97]
Luo, Y.; Tang, L.; Khan, U.; Yu, Q.; Cheng, H. M.; Zou, X.; Liu, B. Nat. Commun. 2019, 10, 269.
[98]
Zhang, Z.; Zhao, H.; Teng, Y.; Chang, X.; Xia, Q.; Li, Z.; Fang, J.; Du, Z.; Swierczek, K. Adv. Electronic. Mater. 2018, 8, 1700174.
[99]
Qu, Y.; Medina, H.; Wang, S. W.; Wang, Y. C.; Chen, C. W.; Su, T. Y.; Manikandan, A.; Wang, K.; Shih, Y. C.; Chang, J. W. Adv. Mater. 2016, 28, 9831.
[100]
Li, H.; Chen, S.; Zhang, Y.; Zhang, Q.; Jia, X.; Zhang, Q.; Gu, L.; Sun, X.; Song, L.; Wang, X. Nat. Commun. 2018, 9, 2452.
[101]
Zhang, G.; Huo, J.; Wang, X.; Guo, S. Acta Chim. Sinica 2023, 81, 6 (in Chinese).
[101]
(张国强, 霍京浩, 王鑫, 郭守武, 化学学报, 2023, 81, 6.)
[102]
Pokroy, B.; Zolotoyabko, E. J. Mater. Chem. 2003, 13, 682.
[103]
Fabritius, H. O.; Sachs, C.; Triguero, P. R.; Raabe, D. Adv. Mater. 2009, 21, 391.
[104]
Studart, A. R. Chem. Soc. Rev. 2016, 45, 359.
[105]
Ragni, R.; Cicco, S. R.; Vona, D.; Farinola, G. M. Adv. Mater. 2017, 30, 1704289.
[106]
Zhang, C.; Mcadams, D. A.; Grunlan, J. C. Adv. Mater. 2016, 28, 6265.
[107]
Knecht, L. D.; Pasini, P.; Daunert, S. Anal. Bioanal. Chem. 2011, 400, 977.
[108]
Jiang, L.; Feng, L. In Bioinspired Intelligent Nanostructured Interfacial Materials, Ed.: Jiang, L., Chemical Industry Press, Beijing, 2015, pp. 107-116.
[109]
Liu, M.; Wang, S.; Jiang, L. MRS Bull. 2013, 38, 375.
[110]
Bao, Z.; Weatherspoon, M. R.; Shian, S.; Cai, Y.; Graham, P. D.; Allan, S. M.; Ahmad, G.; Dickerson, M. B.; Church, B. C.; Kang, Z. Nature 2007, 446, 172.
[111]
Losic, D.; Yu, Y.; Aw, M. S.; Simovic, S.; Thierry, B.; Addai-Mensah, J. Chem. Commun. 2010, 46, 6323.
[112]
Aw, M. S.; Simovic, S.; Yu, Y.; Addai-Mensah, J.; Losic, D. Powder Technol. 2012, 223, 52.
[113]
Yu, Y.; Addai-Mensah, J.; Losic, D. Sci. Technol. Adv. Mater. 2012, 13, 015008.
[114]
Jeffryes, C.; Campbell, J.; Li, H.; Jiao, J.; Rorrer, G. Energy Environ. Sci. 2011, 4, 3930.
[115]
Chu, H.; Cao, D.; Dong, B.; Qiang, Z. Water Res. 2010, 44, 1573.
[116]
Chen, P. Y.; Mckittrick, J.; Meyers, M. A. Prog. Mater. Sci. 2012, 57, 1492.
[117]
Chen, K.; Li, C.; Shi, L.; Gao, T.; Liu, Z. Nat. Commun. 2016, 7, 13440.
[118]
Zhu, L.; Huan, Y.; Zhang, Z.; Yang, P.; Hu, J.; Shi, Y.; Cui, F.; Zhang, Y. Energy Environ. Mater. 2023, 6, 150.
[119]
Li, Q.; Song, Y.; Xu, R.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z.; Wei, N.; Rümmeli, M. H.; Zou, X. ACS Nano 2018, 12, 10240.
[120]
Oaki, Y.; Kijima, M.; Imai, H. J. Am. Chem. Soc. 2011, 133, 8594.
[121]
Liu, H.; Wang, X.; Cui, W.; Dou, Y.; Zhao, D.; Xia, Y. J. Mater. Chem. 2010, 20, 4223.
[122]
Chen, K.; Li, C.; Chen, Z.; Shi, L.; Reddy, S.; Meng, H.; Ji, Q. Nano Res. 2016, 9, 249.
[123]
Shi, L.; Chen, K.; Du, R.; Bachmatiuk, A.; Ruemmeli, M. H.; Xie, K.; Huang, Y.; Zhang, Y.; Liu, Z. J. Am. Chem. Soc. 2016, 138, 6360.
[124]
Stockton, J.; Armen, M.; Mabuchi, H. J. Opt. Soc. Am. B 2002, 19, 3019.
[125]
Bhattacharya, R.; Konar, S. J. Nanophotonics 2012, 6, 3520.
[126]
Li, W.; Hao, Q.; Zhai, H.; Zeng, H.; Lu, W. Opt. Express. 2007, 15, 2354.
[127]
Yu, H. C. Y.; Eijkelenborg, M. A. V.; Leonsaval, S. G.; Argyros, A.; Barton, G. W. Appl. Opt. 2008, 47, 6497.
[128]
Doshi, R.; Day, P. J.; Carampin, P.; Blanch, E.; Stratford, I. J.; Tirelli, N. Anal. Bioanal. Chem. 2010, 396, 2331.
[129]
Perez-Herrera, R. A.; Lopez-Amo, M. Opt. Fiber Technol. 2013, 19, 689.
[130]
Chen, K.; Zhou, X.; Cheng, X.; Qiao, R.; Cheng, Y.; Liu, C.; Xie, Y.; Yu, W.; Yao, F.; Sun, Z. Nat. Photonics 2019, 13, 754.
[131]
Cheng, Y.; Yu, W. T.; Xie, J.; Wang, R. Y.; Cui, G.; Cheng, X.; Li, M. W.; Wang, K.; Li, J. L.; Sun, Z. P.; Chen, K.; Liu, K. H.; Liu, Z. F. ACS Photonics 2022, 9, 961.
[132]
Zuo, Y.; Yu, W.; Liu, C.; Cheng, X.; Qiao, R.; Liang, J.; Zhou, X.; Wang, J.; Wu, M.; Zhao, Y. Nat. Nanotechnol. 2020, 15, 987.
[133]
Cheng, X.; Zhou, X.; Tao, L.; Yu, W.; Liu, C.; Cheng, Y.; Ma, C.; Shang, N.; Xie, J.; Liu, K. Nanoscale 2020, 12, 14472.
[134]
Zhou, H. Q.; Yu, F.; Huang, Y. F.; Sun, J. Y.; Zhu, Z.; Nielsen, R. J.; He, R.; Bao, J. M.; Goddard, W. A.; Chen, S.; Ren, Z. F. Nat. Commun. 2016, 7, 12765.
[135]
Yao, R. Q.; Shi, H.; Wan, W. B.; Wen, Z.; Lang, X. Y.; Jiang, Q. Adv. Mater. 2020, 32, 1907214.
[136]
Al-Abawi, B. T.; Parveen, N.; Ansari, S. A. Sci. Rep. 2022, 12, 14413.
[137]
Li, G.; Chang, Z.; Li, T.; Wang, K. Ionics 2019, 25, 5881.
[138]
Wei, X.; Lin, C.-C.; Wu, C.; Qaiser, N.; Cai, Y.; Lu, A.-Y.; Qi, K.; Fu, J.-H.; Chiang, Y.-H.; Yang, Z. Nat. Commun. 2022, 13, 6006.
[139]
You, B.; Jiang, N.; Sheng, M.; Bhushan, M. W.; Sun, Y. ACS Catalysis 2016, 6, 714.
[140]
Kibsgaard, J.; Chen, Z.; Reinecke, B. N.; Jaramillo, T. F. Nat. Mater. 2012, 11, 963.
[141]
Xiao, X.; Beechem, T. E.; Brumbach, M. T.; Lambert, T. N.; Davis, D. J.; Michael, J. R.; Washburn, C. M.; Wang, J.; Brozik, S. M.; Wheeler, D. R. ACS Nano 2012, 6, 3573.
[142]
Deng, J.; Li, H.; Wang, S.; Ding, D.; Chen, M.; Liu, C.; Tian, Z.; Novoselov, K.; Ma, C.; Deng, D. Nat. Commun. 2017, 8, 14430.
[143]
Tan, Y.; Liu, P.; Chen, L.; Cong, W.; Ito, Y.; Han, J.; Guo, X.; Tang, Z.; Fujita, T.; Hirata, A. Adv. Mater. 2014, 26, 8023.
[144]
An, W.; Gao, B.; Mei, S.; Xiang, B.; Fu, J.; Wang, L.; Zhang, Q.; Chu, P. K.; Huo, K. Nat. Commun. 2019, 10, 1447.
[145]
Sha, J.; Li, Y.; Villegas Salvatierra, R.; Wang, T.; Dong, P.; Ji, Y.; Lee, S.-K.; Zhang, C.; Zhang, J.; Smith, R. H. ACS Nano 2017, 11, 6860.
[146]
Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163.
[147]
Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1.
[148]
Moskovits, M. Rev. Mod. Phys. 1985, 57, 783.
[149]
Dong, J.-C.; Zhang, X.-G.; Briega-Martos, V.; Jin, X.; Yang, J.; Chen, S.; Yang, Z.-L.; Wu, D.-Y.; Feliu, J. M.; Williams, C. T. Nat. Energy. 2019, 4, 60.
[150]
Xie, Y.; Liu, S.; Huang, K.; Chen, B.; Shi, P.; Chen, Z.; Liu, B.; Liu, K.; Wu, Z.; Chen, K. Adv. Mater. 2022, 34, 2202982.
[151]
Knight, J. C.; Broeng, J.; Birks, T. A.; Russell, P. S. J. Science 1998, 282, 1476.
[152]
Cregan, R.; Mangan, B.; Knight, J.; Birks, T.; Russell, P. S. J.; Roberts, P.; Allan, D. Science 1999, 285, 1537.
[153]
Russell, P. Science 2003, 299, 358.
[154]
Wadsworth, W. J.; Ortigosa-Blanch, A.; Knight, J. C.; Birks, T. A.; Man, T.-P. M.; Russell, P. S. J. JOSA B. 2002, 19, 2148.
[155]
Ni, Y.; Zhang, L.; An, L.; Peng, J.; Fan, C. IEEE Photonics Technol. Lett. 2004, 16, 1516.
[156]
Knight, J.; Skryabin, D. Opt. Express. 2007, 15, 15365.
[157]
Zhao, X.; Zhou, G.; Li, S.; Liu, Z.; Wei, D.; Hou, Z.; Hou, L. Appl. Opt. 2008, 47, 5190.
[158]
Buczynski, R.; Bookey, H.; Pysz, D.; Stepien, R.; Kujawa, I.; McCarthy, J.; Waddie, A.; Kar, A.; Taghizadeh, M. Laser Phys. Lett. 2010, 7, 666.
[159]
Habib, M. S.; Habib, M. S.; Razzak, S. A.; Hossain, M. A. Opt. Fiber Technol. 2013, 19, 461.
[160]
Xu, H.; Kong, Q.; Zhou, C. Opt. Fiber Technol. 2021, 63, 102485.
[161]
Tan, T.; Jiang, X.; Wang, C.; Yao, B.; Zhang, H. Adv. Sci. 2020, 7, 2000058.
[162]
Yun, Q.; Li, L.; Hu, Z.; Lu, Q.; Chen, B.; Zhang, H. Adv. Mater. 2020, 32, 1903826.
[163]
Guo, Y.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. Adv. Mater. 2019, 31, 1807134.
[164]
Duan, X.; Xu, J.; Wei, Z.; Ma, J.; Guo, S.; Liu, H.; Dou, S. Small Methods 2017, 1, 1700156.
[165]
Muska, M.; Wang, Y.; Yang, J.; Ma, L.; Xu, Q.; Ding, H.; Zhu, J.; Yang, Q. ACS Appl. Nano Mater. 2022, 5, 6410.
[166]
Zhu, L.; Yang, P.; Huan, Y.; Zhou, F.; Zhang, Y. Adv. Energ. Sust. Res. 2021, 2, 2100089.
[167]
Chen, K.; Zhang, F.; Sun, J.; Li, Z.; Zhang, L.; Bachmatiuk, A.; Zou, Z.; Chen, Z.; Zhang, L.; Rummeli, M. H. Energy Storage Mater. 2018, 12, 110.
[168]
Song, R.; Zhao, M.; Wang, S.; Lu, Y.; Bao, X.; Luo, Q.; Gou, L.; Fan, X.; Li, D. Acta Chim. Sinica 2024, 82, 426 (in Chinese).
[168]
(宋瑞, 赵铭钦, 王帅, 卢垚, 鲍晓冰, 罗巧梅, 苟蕾, 樊小勇, 李东林, 化学学报, 2024, 82, 426.)
[169]
Jia, H.; Li, X.; Song, J.; Zhang, X.; Luo, L.; He, Y.; Li, B.; Cai, Y.; Hu, S.; Xiao, X. Nat. Commun. 2020, 11, 1474.
[170]
Diab, M.; Shreteh, K.; Afik, N.; Volokh, M.; Abramovich, S.; Abdu, U.; Mokari, T. Adv. Sustain. Syst. 2018, 2, 1800001.
[171]
Weatherspoon, M. R.; Dickerson, M. B.; Wang, G.; Cai, Y.; Shian, S.; Jones, S. C.; Marder, S. R.; Sandhage, K. H. Angew. Chem. Int. Ed. 2007, 46, 5724.
Outlines

/