Review

Applications and Progress of Localized Surface Plasmon Resonance in Detections with Single-molecule Sensitivity

  • Chenglu Luo ,
  • Meng Tian ,
  • Yufan Cui ,
  • Xingyi Ma
Expand
  • a School of Biomedical Engineering and Digital Health & School of Science, Harbin Institute of Technology, Shenzhen 518055, China
    b Biosen International, Jinan 250117, China
    c Briteley Institute of Life Sciences, Yantai 264003, China

Received date: 2024-08-21

  Online published: 2024-11-11

Supported by

National Natural Science Foundations of China(22371059); National Natural Science Foundations of China(82302346); National Natural Science Foundations of China(82411540243); Shenzhen Science and Technology Programs and Medicine Research Fund(JCYJ20210324132815037); Shenzhen Science and Technology Programs and Medicine Research Fund(GXWD20220818171934001); Shenzhen Science and Technology Programs and Medicine Research Fund(GJHZ20220913143010018); Shenzhen Science and Technology Programs and Medicine Research Fund(D2401024); Guangdong Basic and Applied Basic Research Foundations(2022A1515220158); Guangdong Basic and Applied Basic Research Foundations(2024A1515010898); Department of Education of Guangdong(2021KQNCX276); Department of Education of Guangdong(2022ZDZX2065); Department of Education of Guangdong(2023KTSCX225); Fundamental Research Funds for the Central Universities(HIT.OCEF.2022040); Shandong Key Laboratory of Biochemical Analysis(SKLBA2302); Talents Programs(2021QN02Y120); Talents Programs(QJD2002017); Talents Programs(TSCY202006001); Talents Programs(2022HWYQ097)

Abstract

Localized surface plasmon resonance (LSPR) is a unique optical property of noble-metal nanomaterials, such as gold and silver, which can be used to achieve increasingly more applications in human health due to its sensitivity to changes in the refractive index and others of the surrounding environment and has therefore attracted wide attention from researchers. In addition to this, the single molecule is the smallest unit to be studied in the process of life activity, and the study of it presents a challenge to the limit of detection technology. Therefore, the combination of LSPR with the detection strategies of single-molecule recognition can provide a good system for studying the interaction between light and matter at the molecular level, which has extraordinary scientific significance and value for the study of intermolecular affinity, molecular dynamics, and pharmacokinetics, etc. Based on the above background, starting from the LSPR sensing strategies, we first introduce its basic principle and explain the factors affecting the sensing performance, and then discuss the design scheme of highly sensitive optical sensing technology, which can be controlled by the materials, geometric shape and surrounding environment of metal nanoparticles to promote the generation of hot spots, the regulation of their distribution and density, and the enhancement of the electromagnetic field intensity. More refined optical sensing strategies can be devised and optimized for high-sensitivity detection by capitalizing on highly sensitive sensing substrates to magnify the minute variations in the target molecules and ultimately manifest the alterations in the molecular recognition process in the form of optical signals. Finally, the advanced applications of different design schemes in detections with single-molecule sensitivity (DSMS) are analyzed comprehensively, and the development trends of this technology are summarized. Hopefully, this paper can provide new ideas for researchers to develop and design LSPR optical biological or chemical sensors, and effectively optimize and expand the applications of LSPR in DSMS.

Cite this article

Chenglu Luo , Meng Tian , Yufan Cui , Xingyi Ma . Applications and Progress of Localized Surface Plasmon Resonance in Detections with Single-molecule Sensitivity[J]. Acta Chimica Sinica, 2025 , 83(1) : 60 -71 . DOI: 10.6023/A24080248

References

[1]
Wang, J.; Wang, C.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Chin. Chem. Lett. 2023, 34, 108165.
[2]
Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828.
[3]
Kim, S.; Kim, J. M.; Park, J. E.; Nam, J. M. Adv. Mater. 2018, 30, e1704528.
[4]
Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Acc. Chem. Res. 2008, 41, 1578.
[5]
Lee, S. E.; Lee, L. P. Curr. Opin. Biotech. 2010, 21, 489.
[6]
Li, Y.; Jing, C.; Zhang, L.; Long, Y. T. Chem. Soc. Rev. 2012, 41, 632.
[7]
Shao, L.; Ruan, Q. F.; Wang, J. F.; Lin, H. Q. Physics 2014, 43, 290 (in Chinese).
[7]
( 邵磊, 阮琦锋, 王建方, 林海青, 物理, 2014, 43, 290.)
[8]
Zhou, W. C.; Li, Z. H.; Wu, J. Chin. Opt. 2022, 15, 878 (in Chinese).
[8]
( 周文超, 李政昊, 武杰, 中国光学(中英文), 2022, 15, 878.)
[9]
Cheng, L.; Jia, C. C.; Guo, X. F. Chin. Sci. Bull. 2023, 68, 2155 (in Chinese).
[9]
( 程丽, 贾传成, 郭雪峰, 科学通报, 2023, 68, 2155.)
[10]
Zhao, X.; Hao, Q.; Ni, Z. H.; Qiu, T. Acta Phys. Sinica 2021, 70, 148 (in Chinese).
[10]
( 赵星, 郝祺, 倪振华, 邱腾, 物理学报, 2021, 70, 148.)
[11]
Hu, J.; Wang, Z. Y.; Zhang, C. Y. Scientia Sinica Chim. 2017, 47, 1161 (in Chinese).
[11]
( 胡娟, 王子月, 张春阳, 中国科学:化学, 2017, 47, 1161.)
[12]
Ma, X. Y.; Song, S.; Kim, S.; Kwon, M. S.; Lee, H.; Park, W.; Sim, S. J. Nat. Commun. 2019, 10, 836.
[13]
Zhang, P. F.; Ma, G. Z.; Dong, W.; Wan, Z. J.; Wang, S. P.; Tao, N. J. Nat. Methods. 2020, 17, 1010.
[14]
Jia, H. X.; Li, Z. P.; Liu, C. H.; Cheng, Y. Q. Angew. Chem. Int. Ed. 2010, 49, 5498.
[15]
Sreekanth, K. V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U. A.; Luca, A. D.; Strangi, G. Nat. Mater. 2016, 15, 621.
[16]
Liu, L. H.; Zhang, X. J.; Zhu, Q.; Li, K. W.; Lu, Y; Zhou, X. H.; Guo, T. Light-Sci. Appl. 2021, 10, 181.
[17]
Monroe, M. R.; Daaboul, G. G.; Tuysuzoglu, A.; Lopez, C. A.; Little, F. F.; ünlü, M. S. Anal. Chem. 2013, 85, 3698.
[18]
Liu, M. M.; Chao, J.; Deng, S.; Wang, K.; Li, K.; Fan, C. H. Colloid Surface B. 2014, 124, 111.
[19]
Hammami, I.; Alabdallah, N. M.; Al Jomaa, A.; Kamoun, M. J. King Saud Univ. Sci. 2021, 33, 101560.
[20]
Li, J.; Lou, Z. Z.; Li, B. J. Chinese Chem. Lett. 2022, 33, 1154.
[21]
Chen, C. Y.; Li, Y. F.; Qu, Y.; Chai, Z. F.; Zhao, Y. L. Chem. Soc. Rev. 2013, 42, 8266.
[22]
Fan, J. N.; Cheng, Y. Q.; Sun, M. T. Chem. Rec. 2020, 20, 1474.
[23]
Lee, K. S.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 19220.
[24]
Zhang, L.; Ma, X. Y.; Wang, G. Q.; Liang, X. G.; Mitomo, H.; Pike, A.; Houlton, A.; Ijiro, K. Nano Today 2021, 39, 101154.
[25]
Truong, P. L.; Ma, X. Y.; Sim, S. J. Nanoscale 2014, 6, 2307.
[26]
Agrawal, N.; Saxena, R.; Singh, L.; Saha, C.; Kumar, S. ISSS J. Micro Smart Syst. 2022, 11, 31.
[27]
Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267.
[28]
Wang, K.; Cao, L. Sciencepaper online 2014 (in Chinese).
[28]
( 王康, 曹雷, 中国科技论文在线, 2014.)
[29]
Cao, J.; Sun, T.; Grattan, K. T. V. Sensor Actuators B-Chem. 2014, 195, 332.
[30]
Petryayeva, E.; Krull, U. J. Anal. Chim. Acta 2011, 706, 8.
[31]
Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442.
[32]
Wiley, B. J.; Im, S. H.; Li, Z. Y.; Mclellan, J.; Siekkinen, A.; Xia, Y. N. J. Phys. Chem. B 2006, 110, 15666.
[33]
Zhu, S. L.; Zhou, W. J. Opt. 2011, 40, 65.
[34]
Yan, B. X.; Zhu, Y. Y.; Wei, Y.; Pei, H. Sci. Rep. 2021, 11, 8391.
[35]
Ma, X. Y.; Sim, S. J. J. Mater. Chem. B 2020, 8, 6197.
[36]
Schatz, G. C.; Van Duyne, R. P. Handbook of Vibrational Spectroscopy, John Wiley & Sons, New Jersey, 2006, pp. 759-774.
[37]
Lee, L. Understanding Biophotonics: Fundamentals, Advances, and Applications, Ed.: Tsia, K. K., CRC, Florida, 2015, Chapter 8.
[38]
Jia, B. L.; Chen, J. J.; Zhou, J.; Zeng, Y. J.; Ho, H. P.; Shao, Y. H. Nano Res. 2022, 15, 8367.
[39]
Ma, X. Y.; Huh, J.; Park, W.; Lee, L. P.; Kwon, Y. J.; Sim, S. J. Nat. Commun. 2016, 7, 12873.
[40]
Hartland, G. V. Chem. Rev. 2011, 111, 3858.
[41]
Shang, L.; Liu, C. J.; Chen, B.; Hayashi, K. ACS Sens. 2018, 3, 1531.
[42]
Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M. Nano Today 2009, 4, 244.
[43]
Cao, C.; Zhang, J.; Wen, X. L.; Dodson, S. L.; Dao, N. T.; Wong, L. M.; Wang, S. J.; Li, S. Z.; Phan, A. T.; Xiong, Q. H. ACS Nano 2013, 7, 7583.
[44]
Ma, X. Y.; Truong, P. L.; Anh, N. H.; Sim, S. J. Biosens. Bioelectron. 2015, 67, 59.
[45]
Wang, Y.; Liu, X. L.; Wu, L. J.; Ding, L. H.; Effah, C. Y.; Wu, Y. J.; Xiong, Y. M.; He, L. L. Biosens. Bioelectron. 2022, 195, 113661.
[46]
Qiu, G. Y.; Gai, Z. B.; Saleh, L.; Tang, J. K.; Gui, T.; Kullak-Ublick, G. A.; Wang, J. ACS Nano 2021, 15, 7536.
[47]
Taylor, A. B.; Zijlstra, P. ACS Sens. 2017, 2, 1103.
[48]
Shu, F. Z.; Fan, R. H.; Wang, J. N.; Peng, R. W.; Wang, M. Acta Phys. Sin. 2019, 68, 133 (in Chinese).
[48]
( 束方洲, 范仁浩, 王嘉楠, 彭茹雯, 王牧, 物理学报, 2019, 68, 133.)
[49]
El Barghouti, M.; Haidar, O.; Akjouj, A.; Mir, A. Photonic. Nanostruct. 2022, 50, 101016.
[50]
Farka, Z.; Mickert, M. J.; Pastucha, M.; Mikusová, Z.; Skládal, P.; Gorris, H. H. Angew. Chem. Int. Ed. 2020, 59, 10746.
[51]
Chauhan, N.; Saxena, K.; Jain, U. Int. J. Biol. Macromol. 2022, 209, 1389.
[52]
Kim, H.; Lee, J. U.; Kim, S.; Song, S.; Sim, S. J. ACS Sens. 2019, 4, 595.
[53]
Qiu, G. Y.; Gai, Z. B.; Tao, Y. L.; Schmitt, J.; Kullak-Ublick, G. A.; Wang, J. ACS Nano 2020, 14, 5268.
[54]
Guo, K. Y.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A. A.; Ahmad, A. N.; Alhamlan, F. S.; Shuaib, M.; Pain, A.; McCulloch, I.; Arold, S. T.; Grünberg, R.; Inal, S. Nat. Biomed. Eng. 2021, 5, 666.
[55]
Zhang, Y.; Shuai, Z. H.; Zhou, H.; Luo, Z. M.; Liu, B.; Zhang, Y. N.; Zhang, L.; Chen, S. F.; Chao, J.; Weng, L. X.; Fan, Q. L.; Fan, C. H.; Huang, W.; Wang, L. H. J. Am. Chem. Soc. 2018, 140, 3988.
[56]
Behera, B. K.; Das, A.; Sarkar, D. J.; Weerathunge, P.; Parida, P. K.; Das, B. K.; Thavamani, P.; Ramanathan, R.; Bansal, V. Environ. Pollut. 2018, 241, 212.
[57]
Borah, S. B. D.; Borah., T.; Baruah, S.; Dutta, J. Groundw. Sustain. Dev. 2015, 1, 1.
[58]
Yang, Z. Y.; Sassa, F.; Hayashi, K. Sensors-Basel. 2023, 23, 9525.
[59]
Wang, K.; Wang, Y.; Li, Q.; Liu, Z. W.; Liu, S. Q. Sensor Actuators B-Chem. 2022, 351, 130977.
[60]
Wang, X.; Wang, X. W.; Xiao, L. H. Acta Chim. Sinica 2023, 81, 1002 (in Chinese).
[60]
( 王晓, 王星文, 肖乐辉, 化学学报, 2023, 81, 1002.)
[61]
Weng, R.; Lou, S. T.; Li, L. D.; Zhang, Y.; Qiu, J.; Su, X.; Qian, Y. Z.; Walter, N. G. Anal. Chem. 2019, 91, 1424.
[62]
Wei, H.; Abtahi, S. M. H.; Vikesland, P. J. Environ. Sci-Nano. 2015, 2, 120.
[63]
Yang, B.; Zhang, Y.; Zhang, Y.; Dong, Z. C. J. Vac. Sci. Technol. 2021, 41, 835 (in Chinese).
[63]
( 杨犇, 张尧, 张杨, 董振超, 真空科学与技术学报, 2021, 41, 835.)
[64]
Bi, X. Y.; Czajkowsky, D. M.; Shao, Z. F.; Ye, J. Nature 2024, 628, 711.
[65]
Prigoda, K.; Ermina, A.; Bolshakov, V.; Tabarov, A.; Levitskii, V.; Andreeva, O.; Gazizulin, A.; Pavlov, S.; Danilenko, D.; Vitkin, V.; Zharova, Y. Opt. Mater. 2024, 149, 114977.
[66]
Su, Z. Q.; Li, T.; Wu, D.; Wu, Y. N.; Li, G. L. J. Agr. Food Chem. 2022, 70, 458.
[67]
Spitzberg, J. D.; Zrehen, A.; van Kooten, X. F.; Meller, A. Adv. Mater. 2019, 31, 1900422.
[68]
Yang, J. M.; Feng, J. D. Chin. Sci. Bull. 2022, 67, 2452 (in Chinese).
[68]
( 杨金梅, 冯建东, 科学通报, 2022, 67, 2452.)
[69]
Li, X. X.; Jia, M. D.; Yu, L. C.; Li, Y. J.; He, X. W.; Chen, L. X.; Zhang, Y. K. Food Chem. 2023, 402, 134239.
[70]
Zhang, Y. Y.; Li, G. L.; Wu, D.; Li, X. T.; Yu, Y. X.; Luo, P. J.; Chen, J.; Dai, C. J.; Wu, Y. N. Trac-Trend Anal. Chem. 2019, 121, 115669.
[71]
Cappi, G.; Spiga, F. M.; Moncada, Y.; Ferretti, A.; Beyeler, M.; Bianchessi, M.; Decosterd, L.; Buclin, T.; Guiducci, C. Anal. Chem. 2015, 87, 5278.
[72]
Huang, J. A.; Mousavi, M. Z.; Giovannini, G.; Zhao, Y. Q.; Hubarevich, A.; Soler, M. A.; Rocchia, W.; Garoli, D.; Angelis, F. D. Angew. Chem. Int. Ed. 2020, 59, 11423.
[73]
Zhao, Q. L.; Yang, L.; Xie, R. X. China Pharm. 2020, 31, 2294 (in Chinese).
[73]
( 赵秋玲, 杨琳, 谢瑞祥, 中国药房, 2020, 31, 2294.)
[74]
Zinn, S.; Vazquez-Lombardi, R.; Zimmermann, C.; Sapra, P.; Jermutus, L.; Christ, D. Nat. Cancer. 2023, 4, 165.
[75]
Batool, R.; Soler, M.; Singh, R.; Lechuga, L. M. Anal. Bioanal. Chem. 2024, DOI: 10.1007/s00216-024-05398-3.
[76]
Batool, R.; Soler, M.; Colavita, F.; Fabeni, L.; Matusali, G.; Lechuga, L. M. Biosens. Bioelectron. 2023, 226, 115137.
[77]
Fan, H. L.; Huang, L. P.; Li, R.; Chen, M. Q.; Huang, J. J.; Xu, H.; Hu, W. J.; Liu, G. L. Adv. Funct. Mater. 2022, 32, 2203635.
[78]
Zeng, Q.; Zhou, X. Y.; Yang, Y. T.; Sun, Y.; Wang, J. A.; Zhai, C. H.; Li, J. H.; Yu, H. PNAS 2020, 119, e2120379119.
[79]
Wang, C. Y.; Huang, C. H.; Gao, Z. Q.; Shen, J. L.; He, J. C.; MacLachlan, A.; Ma, C.; Chang, Y.; Yang, W.; Cai, Y. X.; Lou, Y.; Dai, S. Y.; Chen, W. Q.; Li, F.; Chen, P. Y. ACS Sens. 2021, 6, 3308.
[80]
Li, C. W.; Lim, S. O.; Xia, W. Y.; Lee, H. H.; Chan, L. C.; Kuo, C. W.; Khoo, K. H.; Chang, S. S.; Cha, J. H.; Kim, T. W.; Hsu, J. L.; Wu, Y.; Hsu, J. M.; Yamaguchi, H.; Ding, Q. Q.; Wang, Y.; Yao, J.; Lee, C. C.; Wu, H. J.; Sahin, A. A.; Allison, J. P.; Yu, D. H.; Hortobagyi, G. N.; Hung, M. C. Nat. Commun. 2016, 7, 12632.
[81]
Shu, Z.; Dwivedi, B.; Switchenko, J. M.; Yu, D. S.; Deng, X. M. Nat. Commun. 2024, 15, 6830.
Outlines

/