Review

Current Advances of Solid Acid Catalysts

  • Yu Zhang ,
  • Rui Zhang ,
  • Zijian Wang ,
  • Xiao Wang ,
  • Shuyan Song ,
  • Hongjie Zhang
Expand
  • a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
    b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026
    c Department of Chemistry, Tsinghua University, Beijing 100084
These authors contributed equally to this work

Received date: 2024-09-24

  Online published: 2024-11-14

Supported by

National Science and Technology Major Project of China(2022YFB350400); National Natural Science Foundation of China(22020102003); National Natural Science Foundation of China(22025506); National Natural Science Foundation of China(22271274); National Natural Science Foundation of China(U23A20140); Jilin Province Science and Technology Development Plan Project(20230101022JC)

Abstract

With the increasing awareness of environmental protection and the in-depth implementation of sustainable development strategies, the commonly used liquid acid catalysts in traditional chemical production processes are facing the pressure of elimination or substitution due to their high corrosiveness, difficulty in recycling and potential environmental impact. Solid acids, renowned for their straightforward preparation, minimal ecological footprint, and exceptional catalytic prowess, have become the focus of scientific research and industrial attention. Currently, solid acid catalysts have been proven to be efficient in catalyzing diverse chemical reactions such as alkylation, isomerization, and esterification reactions. Nevertheless, their extensive industrial adoption is significantly hindered by the challenges of suboptimal stability and limited reusability. Developing advanced solid acid catalysts with high activity and stability is of great value and significance in both theoretical research and experimental exploration. A significant amount of notable fundamental research has been devoted to overcoming these limitations, and this review summarizes the scientific and technological work dedicated to preparing efficient solid acid catalysts. At the same time, we highlight the importance of rare earth elements for modification of solid acid catalysts due to their unique multi-electronic bonding and coordinated variability nature, which can have a positive effect on the structural evolution of acid catalysts, thereby improving the activity and stability of solid acid catalysts. This review initially presents concept, classification, synthesis methods and characterization of commonly used solid acid catalysts. Beyond that, we introduce the represented research progress of rare earth elements modified solid acid catalysts. The main emphasis of this review is investigating the contribution of acid properties to the catalytic performance (e.g., acid strength, acid content, type of acid sites, etc.), rather than the traditional physical and chemical properties (e.g., specific surface area, crystalline structure, morphology, etc.). Finally, we present the challenges of the existing catalytic systems and prospects of this field.

Cite this article

Yu Zhang , Rui Zhang , Zijian Wang , Xiao Wang , Shuyan Song , Hongjie Zhang . Current Advances of Solid Acid Catalysts[J]. Acta Chimica Sinica, 2025 , 83(2) : 152 -169 . DOI: 10.6023/A24090289

References

[1]
Qin, R. Z.; Zeng, H. C. Adv. Funct. Mater. 2019, 29, 1903264.
[2]
Ly, I.; Layan, E.; Picheau, E.; Chanut, N.; Nallet, F.; Bentaleb, A.; Dourges, M.-A.; Pellenq, R.; Hillard, E.; Toupance, T. ACS Appl. Mater. Interfaces 2022, 14, 13305.
[3]
Brzeski, J.; Skurski, P. Heliyon 2019, 5, e02133.
[4]
Kirdant, S. P.; Biradar Tamboli, A. T.; Jadhav, V. H. Helv. Chim. Acta 2022, 105, e202200032.
[5]
Kore, R.; Scurto, A. M.; Shiflett, M. B. Ind. Eng. Chem. Res. 2020, 59, 15811.
[6]
Zhang, L.; Long, B. ACS Omega 2019, 4, 18996.
[7]
Singhal, S.; Agarwal, S.; Singh, M.; Rana, S.; Arora, S.; Singhal, N. J. Mol. Liq. 2019, 285, 299.
[8]
Bayat, M.; Gheidari, D. Chemistryselect 2022, 7, e202200774.
[9]
H?pfl, V. B.; Schachtl, T.; Liu, Y.; Lercher, J. A. Ind. Eng. Chem. Res. 2022, 61, 330.
[10]
Mu, J. L.; Liang, M. F.; Huang, H.; Meng, J.; Xu, L. L.; Song, Z. L.; Wu, M.; Miao, Z. C.; Zhuo, S. P.; Zhou, J. RSC Adv. 2022, 12, 9310.
[11]
Jiang, L.; Fan, Y. Q.; Zhang, X. X.; Pei, Y.; Yan, S. R.; Qiao, M. H.; Fan, K. N.; Zong, B. N. Acta Chim. Sinica 2023, 81, 231 (in Chinese).
[11]
(姜兰, 范义秋, 张晓昕, 裴燕, 闫世润, 乔明华, 范康年, 宗保宁, 化学学报, 2023, 81, 231.)
[12]
Cai, X. L. M.S. Thesis, Guangdong University of Technology, Guangzhou, 2016 (in Chinese).
[12]
(蔡晓兰, 硕士论文,广东工业大学, 广州, 2016.)
[13]
Munyentwali, A.; Li, H.; Yang, Q. H. Appl. Catal., A 2022, 633, 118525.
[14]
?nan, B.; Ko?er, A. T.; ?z?imen, D. B. J. Anal. Appl. Pyrolysis 2023, 173, 106095.
[15]
Zhang, Q. F.; Xie, W. L.; Li, J. B.; Guo, L. H. Renewable Energy 2023, 217, 119144.
[16]
Duan, X. X.; Wang, H. Y.; Pan, D. H.; Chen, S. W.; Yu, F.; Yan, X. L.; Li, R. F. Acta Chim. Sinica 2024, 82, 755 (in Chinese).
[16]
(段晓宣, 王恒燕, 潘大海, 陈树伟, 于峰, 闫晓亮, 李瑞丰, 化学学报, 2024, 82, 755.)
[17]
Esmi, F.; Borugadda, V. B.; Dalai, A. K. Catal. Today 2022, 404, 19.
[18]
Tang, S. Y.; Duan, X. L.; Zhang, Q. Y.; Wang, C. W.; Wang, W. G.; Feng, W. L.; Wang, T. L. Biomass Convers. Biorefin. 2022, 14, 2311.
[19]
Pasupulety, N.; Al-zahrani, A. A.; Daous, M. A.; Driss, H.; Alhumade, H. Fuel 2022, 324, 124513.
[20]
Changmai, B.; Vanlalveni, C.; Ingle, A. P.; Bhagat, R.; Rokhum, L. RSC Adv. 2020, 10, 41625.
[21]
álvarez, M.; Cueto, J.; Serrano, D. P.; Marín, P.; Ordó?ez, S. Catal. Today 2024, 428, 114464.
[22]
Lani, N. S.; Ngadi, N. Appl. Nanosci. 2022, 12, 3755.
[23]
Oishi, R.; Li, D. X.; Okazaki, M.; Kinoshita, H.; Ochiai, N.; Yamauchi, N.; Kobayashi, Y.; Wakihara, T.; Okubo, T.; Tada, S.; Iyoki, K. J. CO2 Util. 2023, 72, 102491.
[24]
Wang, Y.; Dai, Y. N.; Wang, T. H.; Li, M. L.; Zhu, Y.; Zhang, L. P. Fuel Process. Technol. 2022, 237, 107472.
[25]
Xing, X. Y.; Shi, X.; Ruan, M. Y.; Wei, Q. C.; Guan, Y.; Gao, H.; Xu, S. Q. Int. J. Biol. Macromol. 2023, 242, 125037.
[26]
Gromov, N. V.; Ogorodnikova, O. L.; Medvedeva, T. B.; Panchenko, V. N.; Yakovleva, I. S.; Isupova, L. A.; Timofeeva, M. N.; Taran, O. P.; Aymonier, C.; Parmon, V. N. Catalysts 2023, 13, 1298.
[27]
Huang, H.; Mu, J. L.; Liang, M. F.; Qi, R. R.; Wu, M.; Xu, L. L.; Xu, H. M.; Zhao, J. P.; Zhou, J.; Miao, Z. C. Mol. Catal. 2024, 552, 113682.
[28]
Ishitani, H.; Takeno, K.; Sasaya, M.; Kobayashi, S. Catal. Sci. Technol. 2023, 13, 5536.
[29]
Matsuhashi, H. Catal. Surv. Asia 2023, 27, 132.
[30]
Ren, Q. H.; Ma, H.; Wang, W. B.; Chen, C. C.; Xiao, J. B.; Che, P. H.; Nie, X.; Huang, Y. Z.; Rao, K. T. V.; Xu, C. B. Biomass Bioenergy 2023, 174, 106860.
[31]
Sievers, C.; Zuazo, I.; Guzman, A.; Olindo, R.; Syska, H.; Lercher, J. A. J. Catal. 2007, 246, 315.
[32]
Feller, A.; Lercher, J. A. Adv. Catal. 2004, 48, 229.
[33]
Guzman, A.; Zuazo, I.; Feller, A.; Olindo, R.; Sievers, C.; Lercher, J. A. Microporous Mesoporous Mater. 2005, 83, 309.
[34]
Song, H.; Zhao, L. L.; Wang, N.; Li, F. Appl. Catal., A 2016, 526, 37.
[35]
Zhao, H. Q.; Song, H.; Zhao, L. L.; Li, F. Prog. React. Kinet. Mech. 2020, 45, 1.
[36]
Li, Y.; Zhang, X. D.; Sun, L.; Zhang, J.; Xu, H. P. Appl. Energy 2010, 87, 156.
[37]
Shu, Q.; Liu, X. Y.; Huo, Y. T.; Tan, Y. H.; Zhang, C. X.; Zou, L. X. Chin. J. Chem. Eng. 2022, 44, 351.
[38]
Wang, K.; Jiang, J. C.; Si, Z.; Liang, X. Y. J. Renewable Sustainable Energy 2013, 5, 052001.
[39]
Zhang, Y. M.S. Thesis, Hefei University of Technology, Hefei, 2007 (in Chinese).
[39]
(张轶, 硕士论文,合肥工业大学, 合肥, 2007.)
[40]
Song, X. M.; Sayari, A. Catal. Rev. 1996, 38, 329.
[41]
Baithy, M.; Mukherjee, D.; Rangaswamy, A.; Reddy, B. M. Catal. Lett. 2022, 152, 1428.
[42]
Amrute, A. P.; Sahoo, S.; Bordoloi, A.; Hwang, Y. K.; Hwang, J.-S.; Halligudi, S. B. Catal. Commun. 2009, 10, 1404.
[43]
Xu, X. P.; Fan, K.; Zhao, S. Z.; Li, J.; Gao, S.; Wu, Z. B.; Meng, X. J.; Xiao, F.-S. Acta Chim. Sinica 2023, 81, 1108 (in Chinese).
[43]
(徐续盼, 范凯, 赵胜泽, 李健, 高珊, 吴忠标, 孟祥举, 肖丰收, 化学学报, 2023, 81, 1108.)
[44]
Ma, T. L.; Yun, Z.; Xu, W.; Chen, L. G.; Li, L.; Ding, J. F.; Shao, R. Chem. Eng. J. 2016, 294, 343.
[45]
Miao, K. K.; Luo, X. L.; Wang, W.; Guo, J. L.; Guo, S. F.; Cao, F. J.; Hu, Y. Q.; Chang, P. M.; Feng, G. D. Microporous Mesoporous Mater. 2019, 289, 109640.
[46]
Zhang, G. X.; Song, A. K.; Duan, Y. W.; Zheng, S. L. Microporous Mesoporous Mater. 2018, 255, 61.
[47]
Prasomsri, T.; Jiao, W. Q.; Weng, S. Z.; Garcia Martinez, J. Chem. Commun. 2015, 51, 8900.
[48]
Gao, B. B.; Yang, M.; Qiao, Y. Y.; Li, J. Z.; Xiang, X.; Wu, P. F.; Wei, Y. X.; Xu, S. T.; Tian, P.; Liu, Z. M. Catal. Sci. Technol. 2016, 6, 7569.
[49]
Li, Y.; Yu, J. H. Nat. Rev. Mater. 2021, 6, 1156.
[50]
Upham, D. C.; Orazov, M.; Jaramillo, T. F. J. Catal. 2021, 399, 132.
[51]
Xue, H. F.; Huang, X. M.; Ditzel, E.; Zhan, E. S.; Ma, M.; Shen, W. J. Chin. J. Catal. 2013, 34, 1496.
[52]
Li, J. R.; Yang, Z.; Li, S. W.; Jin, Q. P.; Zhao, J. S. J. Ind. Eng. Chem. 2020, 82, 1.
[53]
Juan, J. C.; Zhang, J. C.; Yarmo, M. A. J. Mol. Catal. A: Chem. 2007, 267, 265.
[54]
Kim, H.-J.; Shul, Y.-G.; Han, H. Appl. Catal., A 2006, 299, 46.
[55]
Chen, L.; Nohair, B.; Zhao, D. Y.; Kaliaguine, S. Appl. Catal., A 2018, 549, 207.
[56]
Marcì, G.; García-López, E.; Bellardita, M.; Parisi, F.; Colbeau-Justin, C.; Sorgues, S.; Liotta, L. F.; Palmisano, L. Phys. Chem. Chem. Phys. 2013, 15, 13329.
[57]
Yue, D.; Lei, J. H.; Zhou, L. N.; Du, X. D.; Guo, Z. R.; Li, J. S. Arabian J. Chem. 2020, 13, 2649.
[58]
Zhao, J. Ph.D. Dissertation, Fudan University, Shanghai, 2008 (in Chinese).
[58]
(赵杰, 博士论文, 复旦大学, 上海, 2008.)
[59]
Hino, M.; Arata, K. Chem. Lett. 1979, 8, 477.
[60]
Li, L.; Yan, B.; Li, H. X.; Yu, S. T.; Liu, S. W.; Yu, H. L.; Ge, X. P. Fuel 2018, 226, 190.
[61]
Ji, X. B.; Chen, Y. X.; Shen, Z. Y. Asian J. Chem. 2014, 26, 5769.
[62]
Singh, R. P.; Shiwankar, M. M.; Maurya, A. K.; Talmale, A. S.; Gaikwad, G. S.; Wankhade, A. V. J. Photochem. Photobiol., A 2024, 452, 115537.
[63]
Zou, R.; Shen, C. Y.; Sun, K. H.; Ma, X. B.; Li, Z. S.; Li, M. S.; Liu, C.-J. J. Energy Chem. 2024, 93, 135.
[64]
Jiao, Y.; Li, S. S.; Liu, B.; Du, Y. M.; Wang, J. L.; Lu, J.; Chen, Y. Q. Appl. Therm. Eng. 2015, 91, 417.
[65]
Jiao, Y.; Zhang, H.; Li, S. S.; Guo, C. H.; Yao, P.; Wang, J. L. Fuel 2018, 233, 724.
[66]
Wei, X. L.; Cheng, Q. W.; Sun, T. G.; Tong, S.; Meng, L. L. Appl. Organomet. Chem. 2021, 35, e6063.
[67]
Feng, J. Y.; Wang, Q. S.; Wu, T.; Gao, S. J.; Zhu, K.; Ye, D.; Guo, R. T. Fuel 2024, 363, 130989.
[68]
Masula, K.; Kore, R.; Bhongiri, Y.; Pola, S.; Basude, M. J. Mol. Struct. 2024, 1305, 137750.
[69]
Song, W. X.; Liu, C.; Yan, J.; Zhou, L. Q.; Zhang, L. H. J. Photochem. Photobiol., A 2024, 451, 115482.
[70]
Yaseen, M.; Khan, A.; Humayun, M.; Bibi, S.; Farooq, S.; Bououdina, M.; Ahmad, S. Green Chem. Lett. Rev. 2024, 17, 2321251.
[71]
Kignelman, G.; Thielemans, W. J. Mater. Sci. 2021, 56, 16877.
[72]
Chen, C. C.; Chen, H. R.; Yu, J. C.; Ye, Z. Q.; Shi, J. L. Chin. J. Catal. 2011, 32, 647 (in Chinese).
[72]
(陈崇城, 陈航榕, 俞建长, 叶争青, 施剑林, 催化学报, 2011, 32, 647.)
[73]
Huang, Y. C.; Zhang, G. C.; Zhang, Q. H. ACS Omega 2021, 6, 3875.
[74]
Freitas, E. F.; Paiva, M. F.; Dias, S. C. L.; Dias, J. A. Catal. Today 2017, 289, 70.
[75]
Devi, K. K.; Chellapandiankannan J. Porous Mater. 2023, 30, 1055.
[76]
Mateos, P. S.; Ruscitti, C. B.; Casell, M. L.; Matkovic, S. R.; Briand, L. E. Catalysts 2023, 130, 1253.
[77]
Ahmad, M. Y.; Saleh, S. N. M.; Abdullah, A. Z. Appl. Catal., A 2024, 670, 119534.
[78]
Liu, X.; Wang, K.; Liu, B.; Guo, Z.; Zhang, C.; Lv, Z. Catal. Lett. 2021, 152, 2756.
[79]
Yuan, H.; He, J.; Li, R.; Ma, X. Res. Chem. Intermed. 2017, 43, 4353.
[80]
Zhang, M.; Cheng, Q. W.; Chen, T.; We, X. L.; Meng, L. L. Appl. Organomet. Chem. 2022, 36, e6617.
[81]
Zhou, X.; He, P.; Zhang, C. ACS Omega 2020, 5, 11529.
[82]
Peng, Q. P.; Zhao, X. G.; Li, D. F.; Chen, M. Y.; Wei, X. J.; Fang, J.; Cui, K.; Ma, Y.; Hou, Z. S. Fuel Process. Technol. 2020, 214, 106705.
[83]
Wang, A. Q.; Wang, J. X.; Lu, C.; Xu, M. L.; Lv, J. H.; Wu, X. L. Fuel 2018, 234, 430.
[84]
Thimmaraju, N.; Mohamed Shamshuddin, S. Z.; Pratap, S. R.; Shyam Prasad, K. Arabian J. Chem. 2019, 12, 1860.
[85]
Meng, C.; Cao, G. P.; Li, X. K.; Yan, Y. Z.; Zhao, E. Y.; Hou, L. Y.; Shi, H. Y. React. Kinet. Mech. Catal. 2017, 121, 719.
[86]
Wang, S.; Meng, X.; Liu, N. W.; Shi, L. Sep. Purif. Technol. 2023, 308, 122731.
[87]
Wang, Y. H.; Wang, J. J.; Liang, J. H.; Wang, J. G.; Cheng, J.; Ding, Z. X.; Liu, Z.; Ren, X. Q. Acta Phys.-Chim. Sin. 2017, 33, 2277 (in Chinese).
[87]
(王跃桦, 王俊杰, 梁金花, 王俊格, 成静, 丁中协, 刘振, 任晓乾, 物理化学学报, 2017, 33, 2277.)
[88]
Wang, T. T.; Dai, Q. G.; Yan, F. W. Korean J. Chem. Eng. 2017, 34, 664.
[89]
Miao, L.; Hong, Z.; Wang, X. X.; Jia, W. Z.; Zhao, G. Q.; Huan, Y. Q.; Zhu, Z. R. Microporous Mesoporous Mater. 2022, 332, 111718.
[90]
Liu, R. Z.; Bian, Y. K.; Dai, W. L. Chin. J. Struct. Chem. 2024, 43, 100250.
[91]
Yi, X. F.; Liu, K. Y.; Chen, W.; Li, J. J.; Xu, S. T.; Li, C. B.; Xiao, Y.; Liu, H. C.; Guo, X. W.; Liu, S.-B.; Zheng, A. M. J. Am. Chem. Soc. 2018, 140, 10764.
[92]
Gao, N. B.; Salisu, J.; Quan, C.; Williams, P. Renewable Sustainable Energy Rev. 2021, 145, 111023.
[93]
Zheng, B. Z.; Fan, J. Y.; Chen, B.; Qin, X.; Wang, J.; Wang, F.; Deng, R. R.; Liu, X. G. Chem. Rev. 2022, 122, 5519.
[94]
Zhang, S.; Saji, S. E.; Yin, Z. Y.; Zhang, H. B.; Du, Y. P.; Yan, C.-H. Adv. Mater. 2021, 33, 2005988.
[95]
Bhattar, S.; Abedin, M. A.; Kanitkar, S.; Spivey, J. J. Catal. Today 2021, 365, 2.
[96]
Liu, Y.; Wang, L. H.; Li, R.; Hu, R. S. J. Mol. Catal. A: Chem. 2016, 421, 29.
[97]
Li, H.; Gui, Z. Y.; Yang, S.; Qi, Z. W.; Saravanamurugan, S.; Riisager, A. Energy Technol. 2018, 6, 1060.
[98]
Wang, H. Y.; Ma, S.; Zhou, Z. M.; Li, M. J.; Wang, H. Fuel 2020, 269, 117419.
[99]
Sievers, C.; Liebert, J. S.; Stratmann, M. M.; Olindo, R.; Lercher, J. A. Appl. Catal., A 2008, 336, 89.
[100]
Yang, Z. Q.; Zhang, R. R.; Zhang, H. H.; Tang, H. G.; Liu, R. X.; Zhang, S. J. Chin. J. Chem. Eng. 2022, 46, 173.
[101]
Zhang, H. H.; Xu, J. K.; Tang, H. G.; Yang, Z. Q.; Liu, R. X.; Zhang, S. J. Ind. Eng. Chem. Res. 2019, 58, 9690.
[102]
Gerzeliev, I. M.; Temnikova, V. A.; Deniskin, O. V.; Baskhanova, M. N.; Khusaimova, D. O.; Maksimov, A. L. Pet. Chem. 2019, 59, 706.
[103]
Thakur, R.; Halder, G.; Barman, S. Int. J. Chem. React. Eng. 2020, 18, 20200032.
[104]
Wei, W. Q.; Wu, S. B. Fuel 2018, 225, 311.
[105]
Yan, G. X.; Wang, A. Q.; Wachs, I. E.; Baltrusaitis, J. Appl.Catal., A 2019, 572, 210.
[106]
Yang, L. M.; Xing, S. Y.; Sun, H. Z.; Miao, C. L.; Li, M.; Lv, P.; Wang, Z. M.; Yuan, Z. H. Fuel Process. Technol. 2019, 187, 52.
[107]
Song, H.; Wang, N.; Song, H. L.; Li, F. Catal. Commun. 2015, 59, 61.
[108]
Wang, P. Z.; Zhang, J. Y.; Han, C. Y.; Yang, C. H.; Li, C. Y. Appl. Surf. Sci. 2016, 378, 489.
[109]
Li, L. R. M.S. Thesis, Northeast Petroleum University, Daqing, 2012 (in Chinese).
[109]
(李丽蓉, 硕士论文,东北石油大学, 大庆, 2012.)
[110]
Suo, Y. H. Ph.D. Dissertation, Harbin Institute of Technology, Harbin, 2014 (in Chinese).
[110]
(所艳华, 博士论文,哈尔滨工业大学, 哈尔滨, 2014.)
[111]
Ebadinezhad, B.; Haghighi, M. Chem. Eng. J. 2020, 402, 125146.
[112]
Li, X. P. M.S. Thesis, Jiangxi University of Science and Technology, Ganzhou, 2020 (in Chinese).
[112]
(李兴鹏, 硕士论文,江西理工大学, 赣州, 2020.)
[113]
Li, Y.; Huang, S. Y.; Cheng, Z. Z.; Cai, K.; Li, L. D.; Milan, E.; Lv, J.; Wang, Y.; Sun, Q.; Ma, X. B. Appl. Catal., B 2019, 256, 117777.
[114]
Khezri, H.; Izadbakhsh, A.; Izadpanah, A. A. Fuel Process. Technol. 2020, 199, 106253.
[115]
Aghaei, E.; Haghighi, M. Microporous Mesoporous Mater. 2018, 270, 227.
[116]
Zhao, Z. K.; Ran, J. Appl. Catal., A 2015, 503, 77.
[117]
Wang, X. M.; Wu, X. T.; Zhao, M.; Zhang, R.; Wang, Z. J.; Li, Y. O.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Nano Res. 2024, 17, 5645.
[118]
Wu, X. T.; Wang, X.; Zhang, L. L.; Wang, X. M.; Song, S. Y.; Zhang, H. J. Angew. Chem. Int. Ed. 2024, 63, e202317594.
[119]
Fan, J.; Ning, P.; Song, Z. X.; Liu, X.; Wang, L. Y.; Wang, J.; Wang, H. M.; Long, K. X.; Zhang, Q. L. Chem. Eng. J. 2018, 334, 855.
[120]
Gardy, J.; Osatiashtiani, A.; Céspedes, O.; Hassanpour, A.; Lai, X. J.; Lee, A. F.; Wilson, K.; Rehan, M. Appl. Catal., B 2018, 234, 268.
[121]
Wang, J.; Yang, P. P.; Fan, M. Q.; Yu, W.; Jing, X. Y.; Zhang, M. L.; Duan, X. Mater. Lett. 2007, 61, 2235.
[122]
Zeng, M. J.; Pan, X. J. Catal. Rev. 2022, 64, 445.
[123]
Wu, L. H.; Zhou, Y. F.; Nie, W. Y.; Song, L. Y.; Chen, P. P. Appl. Surf. Sci. 2015, 351, 320.
[124]
Han, X. X.; Zhang, L. L.; Zhang, R.; Wang, K.; Wang, X.; Li, B.; Tao, Z. P.; Song, S. Y.; Zhang, H. J. Dalton Trans. 2024, 53, 3290.
[125]
Xu, J. H.; Li, L. L.; Pan, J.; Cui, W. J.; Liang, X.; Yu, Y.; Liu, B.; Wang, X.; Song, S. Y.; Zhang, H. J. Adv. Sustainable Syst. 2022, 6, 2100439.
[126]
Zhang, S. S.; Zhang, L. L.; Liu, L.; Chu, X.; Wang, X.; Song, S. Y.; Zhang, H. J. New J. Chem. 2023, 47, 6282.
[127]
Xu, J.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Cui, W. J.; Liu, L.; Bootharaju, M. S.; Kim, J. H.; Hyeon, T.; Zhang, H. J.; Wang, Y.; Song, S. Y.; Wang, X. Angew. Chem. Int. Ed. 2023, 62, e202302877.
[128]
Liang, X.; Zhang, L. L.; Wang, X.; Song, S. Y.; Zhang, H. J. Chin. J. Struct. Chem. 2023, 42, 100101.
[129]
Wang, H. L.; Bootharaju, M. S.; Kim, J. H.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Xu, J.; Hyeon, T.; Wang, X.; Song, S. Y.; Zhang, H. J. J. Am. Chem. Soc. 2023, 145, 2264.
[130]
Winoto, H. P.; Fikri, Z. A.; Ha, J.-M.; Park, Y.-K.; Lee, H.; Suh, D. J.; Jae, J. Appl. Catal., B 2019, 241, 588.
Outlines

/