Solid-State Bromine for Bromide Synthesis, a Case Study of CrSBr
Received date: 2024-09-12
Online published: 2024-12-02
Supported by
National Natural Science Foundation of China(22373014); Natural Science Foundation of Fujian Province(2022J06019)
CrSBr, a magnetic two-dimensional material, has attracted increasing attention for its unique magnetic, electronic, and optical properties. Elemental bromine is necessary for the synthesis of CrSBr crystals in the previous reports. However, elemental bromine is a kind of chemical, which is volatile, highly toxic, and corrosive liquid at room temperature. The use of elemental bromine complicates the synthesis process and elevates safety risks in the laboratory. Herein, we report a novel method for the synthesis of CrSBr using solid-state bromine Cs4Sb2Br12 as a new bromine source instead of liquid bromine, circumventing the associated inconveniences and hazards. Typical synthesis conditions for CrSBr are as follows: Cs4Sb2Br12 crystals (0.50 mmol, 1.0 equiv.) are placed at the left end of a 24 cm quartz tube, with chromium powder (1.00 mmol, 2.0 equiv.) and sulfur powder (1.00 mmol, 2.0 equiv.) positioned at the right end. The tube is then sealed under vacuum with a necked middle part. The necked part is used to prevent premature mixing of the reactants. Thereafter, the evacuated quartz tube is placed in a two-zone tubular furnace. The material undergoes a pre-reaction at 250 ℃ for 24 h to completely release bromine. Subsequently, while the left end is maintained at a constant temperature of 250 ℃, the right end is heated to 700 ℃ in 8 h and stays there for 12 h, then increased to 880 ℃ in 3 h, and gradually raised to 930 ℃ over a period of 5 d. Finally, the temperature is slowly reduced to room temperature over the course of one day. After cooling, the high-quality CrSBr single crystals are collected and comprehensively characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and Raman spectroscopy techniques. Compared to traditional methods, the solid-state bromine synthesis of CrSBr not only circumvents the potential hazards associated with the direct use of bromine, enhancing the safety of the synthesis process, but also provides a novel approach for the application of other solid-state halogens in crystal synthesis.
Murong Xu , Chun Zhou , Zihui Wang , Libing Yang , Chenyuan Li , Weifeng Zhuo , Xingzhi Wang , Kezhao Du . Solid-State Bromine for Bromide Synthesis, a Case Study of CrSBr[J]. Acta Chimica Sinica, 2024 , 82(12) : 1234 -1240 . DOI: 10.6023/A24090276
[1] | Wang, Q. H.; Bedoya-Pinto, A.; Blei, M.; Dismukes, A. H.; Hamo, A.; Jenkins, S.; Koperski, M.; Liu, Y.; Sun, Q. C.; Telford, E. J.; Kim, H. H.; Augustin, M.; Vool, U.; Yin, J. X.; Li, L. H.; Falin, A.; Dean, C. R.; Casanova, F.; Evans, R. F. L.; Chshiev, M.; Mishchenko, A.; Petrovic, C.; He, R.; Zhao, L.; Tsen, A. W.; Gerardot, B. D.; Brotons-Gisbert, M.; Guguchia, Z.; Roy, X.; Tongay, S.; Wang, Z.; Hasan, M. Z.; Wrachtrup, J.; Yacoby, A.; Fert, A.; Parkin, S.; Novoselov, K. S.; Dai, P.; Balicas, L.; Santos, E. J. G. ACS Nano 2022, 16, 6960. |
[2] | Ziebel, M. E.; Feuer, M. L.; Cox, J.; Zhu, X.; Dean, C. R.; Roy, X. Nano Lett 2024, 24, 4319. |
[3] | Dirnberger, F.; Quan, J.; Bushati, R.; Diederich, G. M.; Florian, M.; Klein, J.; Mosina, K.; Sofer, Z.; Xu, X.; Kamra, A.; García-Vidal, F. J.; Alù, A.; Menon, V. M. Nature 2023, 620, 533. |
[4] | Bae, Y.; Wang, J.; Scheie, A.; Xu, J.-W.; Chica, D. G.; Diederich, G.; Cenker, J.; Ziebel, M. E.; Bai, Y.; Ren, H.; Dean, C.; Delor, M.; Xu, X.; Roy, X.; Kent, A.; Zhu, X. Nature 2022, 609, 282. |
[5] | Boix-Constant, C.; Jenkins, S.; Rama-Eiroa, R.; Santos, E. J. G.; Ma?as-Valero, S.; Coronado, E. Nat. Mater. 2023, 23, 212. |
[6] | Burch, K. S.; Mandrus, D.; Park, J.-G. Nature 2018, 563, 47. |
[7] | Gong, C.; Zhang, X. Science 2019, 363, 706. |
[8] | Tabataba-Vakili, F.; Nguyen, H. P. G.; Rupp, A.; Mosina, K.; Papavasileiou, A.; Watanabe, K.; Taniguchi, T.; Maletinsky, P.; Glazov, M. M.; Sofer, Z.; Baimuratov, A. S.; H?gele, A. Nat. Commun. 2024, 15, 4735. |
[9] | Tschudin, M. A.; Broadway, D. A.; Siegwolf, P.; Schrader, C.; Telford, E. J.; Gross, B.; Cox, J.; Dubois, A. E. E.; Chica, D. G.; Rama-Eiroa, R.; Santos, E. J. G.; Poggio, M.; Ziebel, M. E.; Dean, C. R.; Roy, X.; Maletinsky, P. Nat. Commun. 2024, 15, 6005. |
[10] | Beck, J. Z. Anorg. Allg. Chem. 1990, 585, 157. |
[11] | Lopez-Paz, S. A.; Guguchia, Z.; Pomjakushin, V. Y.; Witteveen, C.; Cervellino, A.; Luetkens, H.; Casati, N.; Morpurgo, A. F.; von Rohr, F. O. Nat. Commun. 2022, 13, 4745. |
[12] | Klein, J.; Pham, T.; Thomsen, J. D.; Curtis, J. B.; Denneulin, T.; Lorke, M.; Florian, M.; Steinhoff, A.; Wiscons, R. A.; Luxa, J.; Sofer, Z.; Jahnke, F.; Narang, P.; Ross, F. M. Nat. Commun. 2022, 13, 5420. |
[13] | Long, F.; Mosina, K.; Hübner, R.; Sofer, Z.; Klein, J.; Prucnal, S.; Helm, M.; Dirnberger, F.; Zhou, S. Appl. Phys. Lett. 2023, 123, 222401. |
[14] | Scheie, A.; Ziebel, M.; Chica, D. G.; Bae, Y. J.; Wang, X.; Kolesnikov, A. I.; Zhu, X.; Roy, X. J. A. S. 2022, 9, 2202467. |
[15] | Lin, H.; Ma, R.; Jiang, Y.; Xu, M.; Lin, Y.; Du, K. Acta Chim. Sinica 2024, 82, 62. (in Chinese) |
[15] | (林航青, 马若茹, 江怡蓝, 许木榕, 林洋彭, 杜克钊, 化学学报, 2024, 82, 62.) |
[16] | Lin, Y.-P.; Huang, X.-Y.; Du, K.-Z. Mater. Chem. Phys. 2022, 280, 125820. |
[17] | Lin, Y. P.; Xia, B.; Hu, S.; Zhong, Y.; Huang, Y. E.; Zhang, Z. Z.; Wu, N.; Wu, Y. W.; Wu, X. H.; Huang, X. Y.; Xiao, Z.; Du, K. Z. Energy Environ. Mater. 2020, 3, 535. |
[18] | Lin, K.; Li, Y.; Ghorbani-Asl, M.; Sofer, Z.; Winnerl, S.; Erbe, A.; Krasheninnikov, A.; Helm, M.; Zhou, S.; Dan, Y.; Prucnal, S. J. Phys. Chem. Lett. 2024, 15, 6010. |
[19] | Wilson, N. P.; Lee, K.; Cenker, J.; Xie, K.; Dismukes, A. H.; Telford, E. J.; Fonseca, J.; Sivakumar, S.; Dean, C.; Cao, T.; Roy, X.; Xu, X.; Zhu, X. Nat. Mater. 2021, 20, 1657. |
[20] | Pawbake, A.; Pelini, T.; Wilson, N.; Mosina, K.; Sofer, Z.; Heid, R.; Faugeras, C. Phys. Rev. B 2023, 107, 075421. |
[21] | Torres, K.; Kuc, A.; Maschio, L.; Pham, T.; Reidy, K.; Dekanovsky, L.; Sofer, Z.; Ross, F. M.; Klein, J. Adv. Funct. Mater. 2023, 33, 2211366. |
[22] | Lin, K.; Sun, X.; Dirnberger, F.; Li, Y.; Qu, J.; Wen, P.; Sofer, Z.; S?ll, A.; Winnerl, S.; Helm, M.; Zhou, S.; Dan, Y.; Prucnal, S. ACS Nano 2024, 18, 2898. |
[23] | Klein, J.; Song, Z.; Pingault, B.; Dirnberger, F.; Chi, H.; Curtis, J. B.; Dana, R.; Bushati, R.; Quan, J.; Dekanovsky, L.; Sofer, Z.; Alu, A.; Menon, V. M.; Moodera, J. S.; Loncar, M.; Narang, P.; Ross, F. M. ACS Nano 2023, 17, 288. |
[24] | Klein, J.; Pingault, B.; Florian, M.; Hei?enbüttel, M.-C.; Steinhoff, A.; Song, Z.; Torres, K.; Dirnberger, F.; Curtis, J. B.; Weile, M.; Penn, A.; Deilmann, T.; Dana, R.; Bushati, R.; Quan, J.; Luxa, J.; Sofer, Z.; Alù, A.; Menon, V. M.; Wurstbauer, U.; Rohlfing, M.; Narang, P.; Lon?ar, M.; Ross, F. M. ACS Nano 2023, 17, 5316. |
[25] | Marques-Moros, F.; Boix-Constant, C.; Ma?as-Valero, S.; Canet-Ferrer, J.; Coronado, E. ACS Nano 2023, 17, 13224. |
/
〈 |
|
〉 |