Original article

Zirconium-Based Metal-Organic Frameworks for Oxygen Sensing

  • Yue Wang ,
  • Ying Zou ,
  • Yuan Zhang ,
  • Shujie Zheng ,
  • Hengyu Wang ,
  • Tianfu Liu ,
  • Renfu Li
Expand
  • a School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou 350108, China
    b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
†These authors contributed equally to this work.

Received date: 2024-11-01

  Online published: 2024-12-19

Supported by

National Natural Science Foundation of China(22175179)

Abstract

Oxygen sensing plays a vital role in a variety of fields, including environmental monitoring, healthcare, industrial processes, and safety management. Metal-organic frameworks (MOFs), owing to their robust oxygen adsorption capacity and tunable structure, are anticipated to be applied in oxygen sensing to enhance response performance. In this work, we synthesized four common Zr-MOFs (MOF-808, UiO-66, NU-1000, NH2-UiO-66) using the solvothermal method and validated the interaction between the ligands and zirconium clusters by comparing their fluorescence emission and lifetime. Then, the fluorescence of these four MOFs were tested under vacuum, air, and oxygen atmospheres. The experiments demonstrate that oxygen is the main air component that effectively quenches the fluorescence of zirconium-based MOFs. Recirculation experiments and powder X-ray diffraction of MOFs before and after fluorescence quenching indicate that zirconium-based MOFs exhibit high photo-stability. Under vacuum and pure oxygen conditions, UiO-66 can quench 88% of its fluorescence, with response and recovery times as low as 13 s and 15 s, respectively. This rapid detection of O2 over multiple cycles suggests that UiO-66 possesses a high level of sensitivity. In contrast, the fluorescence of chromium-based MOFs with the same ligands is hardly affected. This may be related to the electronic structure of tetravalent zirconium being able to match the electronic structure of paramagnetic oxygen, allowing the fluorescence process of the MOF to be quenched under the action of oxygen. To explore the advantages of zirconium-based MOFs in oxygen sensing, density functional theory calculations are adopted to determine the adsorption energy of oxygen with MIL-100(Cr) and MOF-808(Zr), which have the same ligands, confirming that one of the reasons for the special sensitivity of zirconium-based MOFs to oxygen is the shorter collision radius between Zr metal clusters and O2 molecules. The reduction in fluorescence lifetime confirmed the interaction between oxygen and the MOF. These findings are expected to provide theoretical guidance for the development of sensitive oxygen sensors.

Cite this article

Yue Wang , Ying Zou , Yuan Zhang , Shujie Zheng , Hengyu Wang , Tianfu Liu , Renfu Li . Zirconium-Based Metal-Organic Frameworks for Oxygen Sensing[J]. Acta Chimica Sinica, 2025 , 83(1) : 45 -51 . DOI: 10.6023/A24110333

References

[1]
Kitagawa, Y.; Nakai, T.; Hosoya, S.; Shoji, S.; Hasegawa, Y. ChemPlusChem 2023, 88, e202300149.
[2]
Ellis, J. E.; Sorescu, D. C.; Burkert, S. C.; White, D. L.; Star, A. ACS Appl. Mater. 2013, 9, 27142.
[3]
Zhao, H. M.; Wang, Q. Q.; Wang, S. M.; Yin, J. Y.; Wang, H. B.; Shao, W. H.; Yao, Z. X.; Yao, J. T.; Zang, L. X. Inorg. Chem. Front. 2023, 10, 5161.
[4]
Salaris, N.; Chen, W. Q.; Haigh, P.; Caciolli, L.; Giobbe, G. G.; De Coppi, P.; Papakonstantinou, I.; Tiwari, M. K. Biosens. Bioelectron. 2024, 255, 116198.
[5]
Duong, H. D.; Sohn, O. J.; Rhee, J. I. Biosensors-Basel 2020, 10, 86.
[6]
Liang, Y. N.; Wu, Z. X.; Wei, Y. N.; Ding, Q. L.; Zilberman, M.; Tao, K.; Xie, X.; Wu, J. Nano-Micro Lett. 2022, 14, 52.
[7]
Ji, H. Y.; Liu, Y.; Chen, G. L.; Kong, L.; Yuan, Z. Y.; Meng, F. L. Sensor Actuat. B-Chem. 2024, 414, 315884.
[8]
Biring, S.; Sadhu, A. S.; Deb, M. Sensors 2019, 19, 5124.
[9]
Ren, T.; Jin, X.; Deng, S. H.; Guo, K.; Gao, Y. H.; Shi, X.; Xu, L.; Bai, X.; Shang, Y. B.; Jin, P. K.; Wang, X. C. J. Clean. Prod. 2024, 434, 140332.
[10]
Willett, M. Sensors 2014, 14, 6084.
[11]
Papkovsky, D. B.; Dmitriev, R. I. Chem. Soc. Rev. 2013, 42, 8700.
[12]
Mirzaei, A.; Kim, J. Y.; Kim, H. W.; Kim, S. S. Acc. Chem. Res. 2024, 57, 2395.
[13]
Dou, Z. S.; Yu, J. C.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Yang, D. R.; Qian, G. D. J. Am. Chem. Soc. 2014, 136, 5527.
[14]
Xu, R. Y.; Wang, Y. F.; Duan, X. P.; Lu, K. D.; Micheroni, D.; Hu, A. G.; Lin, W. B. J. Am. Chem. Soc. 2016, 138, 2158.
[15]
Zhu, C. Y.; Wang, Z.; Mo, J. T.; Fan, Y. N.; Pan, M. J. Mater. Chem. C 2020, 8, 9916.
[16]
Zhao, D.; Cui, Y. J.; Yang, Y.; Qian, G. D. CrystEngComm 2016, 18, 3746.
[17]
Zhang, Y. M.; Yuan, S.; Day, G.; Wang, X.; Yang, X. Y.; Zhou, H. C. Coord. Chem. Rev. 2018, 354, 28.
[18]
Zhang, Y. F.; Zhang, Z. H.; Fang, H.; Guo, X. A.; Ma, Y. N.; Zhang, Y. Z.; Xue, D. X. Inorg. Chem. 2023, 62, 20513.
[19]
Chen, Z. J.; Feng, L.; Liu, L. M.; Bhatt, P. M.; Adil, K.; Emwas, A. H.; Assen, A. H.; Belmabkhout, Y.; Han, Y.; Eddaoudi, M. Langmuir 2018, 34, 14546.
[20]
Dai, Q. Q.; Yang, Z. F.; Li, J.; Cao, Y.; Tang, H. B.; Wei, X. C. Renew. Energy 2021, 163, 1588.
[21]
Wang, N.; Ma, L.; Li, Z. X.; Zhou, C. Y.; Su, X. G. Inorg. Chem. Front. 2024, 11, 3820.
[22]
Huang, N.; Yuan, S.; Drake, H.; Yang, X. Y.; Pang, J. D.; Qin, J. S.; Li, J. L.; Zhang, Y. M.; Wang, Q.; Jiang, D. L.; Zhou, H. C. J. Am. Chem. Soc. 2017, 139, 18590.
[23]
Zhu, Y. T.; Zhu, L. W.; Song, W. M.; Deng, C. H. Inorg. Chem. Commun. 2023, 154, 110917.
[24]
Guo, T. T.; Wei, Q. H.; Gao, H. Y.; Chen, J.; Wang, C. A.; Liu, Z. Y.; Li, J.; Wang, G. Mater. Today Chem. 2023, 34, 101693.
[25]
Sonal, S.; Mishra, B. K. Chem. Eng. J. 2021, 424, 130509.
[26]
Jia, C.; He, T.; Wang, G. M. Coord. Chem. Rev. 2023, 476, 214930.
[27]
Tan, J. X.; Chen, Z. Y.; Chen, C. H.; Hsieh, M. F.; Lin, A. Y. C.; Chen, S. S.; Wu, K. C. W. J. Hazard. Mater. 2023, 451, 131113.
[28]
Li, Z. P.; Geng, J. X.; Liu, Y. Y.; Sun, Z. C.; Wang, Y.; Wang, A. J. Chem. J. Chin. Univ. 2023, 44, 20230059 (in Chinese).
[28]
( 李子鹏, 耿佳鑫, 刘颖雅, 孙志超, 王耀, 王安杰, 高等学校化学学报, 2023, 44, 20230059.)
[29]
Zhang, J.; Xia, T.; Zhao, D.; Cui, Y.; Yang, Y.; Qian, G. Sensor Actuat. B-Chem. 2018, 260, 63.
[30]
Xia, T. F.; Jiang, L. C.; Zhang, J.; Wan, Y. T.; Yang, Y.; Gan, J. L.; Cui, Y. J.; Yang, Z. M.; Qian, G. D. Microporous Mesoporous Mater. 2020, 305, 110396.
[31]
Lemon, C. M. Pure Appl. Chem. 2018, 90, 1359.
[32]
Furukawa, H.; Gándara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 4369.
[33]
Mondloch, J. E.; Bury, W.; Fairen-Jimenez, D.; Kwon, S.; DeMarco, E. J.; Weston, M. H.; Sarjeant, A. A.; Nguyen, S. T.; Stair, P. C.; Snurr, R. Q.; Farha, O. K.; Hupp, J. T. J. Am. Chem. Soc. 2013, 135, 10294.
[34]
Han, Y. T.; Liu, M.; Li, K. Y.; Zuo, Y.; Zhang, G. L.; Zhang, Z. C.; Guo, X. W. Chin. J. Appl. Chem. 2016, 33, 368 (in Chinese).
[34]
( 韩易潼, 刘民, 李克艳, 左轶, 张国亮, 张宗超, 郭新闻, 应用化学, 2016, 33, 368.)
[35]
Duan, Z. G.; Pei, Y.; Zheng, S. S.; Wang, Z. Y.; Wang, Y. G.; Wang, J. J.; Hu, Y.; Lv, C. X.; Zhong, W. Chin. J. Inorg. Chem. 2024, 40, 496 (in Chinese).
[35]
( 段章圭, 裴毅, 郑珊珊, 王召阳, 王勇光, 王骏杰, 胡杨, 吕春欣, 钟伟, 无机化学学报, 2024, 40, 496.)
Outlines

/