Review

Overview on Low-oxidation-state Alkaline Earth Organometallic Chemistry

  • Rong Chen ,
  • Baosheng Wei
Expand
  • College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Received date: 2024-10-28

  Online published: 2024-12-25

Supported by

National Natural Science Foundation of China(22271312); start-up funds of Central South University and the Central South University Innovation-Driven Research Programme(2023CXQD047)

Abstract

The chemistry of main group elements with low oxidation states occupies an important position in main group chemistry. Research results in this field can not only enrich the theoretical connotation of chemical bonding, but also have great significance in organometallic chemistry and catalysis, small molecule activation and transformation, etc. Compared with the chemistry of low-oxidation-state p-block elements, the s-block alkaline earth metal elements with low electronegativity can easily lose two valence electrons to form stable +2 oxidation state compounds, but it is more difficult to form low-oxidation-state species with relatively low stability and strong reducing property. Therefore, the study on low-oxidation-state alkaline earth organometallic chemistry is full of challenges. This review outlines the development history of low-oxidation-state alkaline earth organometallic chemistry, briefly describes the relatively mature low-oxidation-state magnesium chemistry, comprehensively introduces the low-oxidation-state beryllium chemistry that has recently made significant progress, highlights the low-oxidation-state calcium, strontium, and barium chemistry that still needs urgent breakthrough.

Cite this article

Rong Chen , Baosheng Wei . Overview on Low-oxidation-state Alkaline Earth Organometallic Chemistry[J]. Acta Chimica Sinica, 2025 , 83(2) : 139 -151 . DOI: 10.6023/A24100325

References

[1]
Zhao, L.; Pan, S.; Holzmann, N.; Schwerdtfeger, P.; Frenking, G. Chem. Rev. 2019, 119, 8781.
[2]
Jones, C. Nat. Rev. Chem. 2017, 1, 0059.
[3]
Chu, T.; Nikonov, G. I. Chem. Rev. 2018, 118, 3608.
[4]
Melen, R. L. Science 2019, 363, 479.
[5]
(a) Jones, C. Commun. Chem. 2020, 3, 159.
[5]
(b) Yadav, S.; Saha, S.; Sen, S. S. ChemCatChem. 2016, 8, 486.
[5]
(c) R?sch, B.; Harder, S. Chem. Commun. 2021, 57, 9354.
[5]
(d) Freeman, L. A.; Walley, J. E.; Gilliard, R. J. Nat. Synth. 2022, 1, 439.
[5]
(e) Harder, S.; Langer, J. Nat. Rev. Chem. 2023, 7, 843.
[5]
(f) Gimferrer, M.; Danes, S.; Vos, E.; Yildiz, C. B.; Corral, I.; Jana, A.; Salvador, P.; Andrada, D. M. Chem. Sci. 2022, 13, 6583.
[5]
(g) Yadav, R.; Sinhababu, S.; Yadav, R.; Kundu, S. Dalton Trans. 2022, 51, 2170.
[5]
(h) Boronski, J. T. Dalton Trans. 2024, 53, 33.
[5]
(i) Evans, M. J.; Jones, C. Chem. Soc. Rev. 2024, 53, 5054.
[6]
Green, S. P.; Jones, C.; Stasch, A. Science 2007, 318, 1754.
[7]
Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079.
[8]
Liu, Y.; Li, S.; Yang, X.-J.; Yang, P.; Wu, B. J. Am. Chem. Soc. 2009, 131, 4210.
[9]
(a) Stasch, A.; Jones, C. Dalton Trans. 2011, 40, 5659.
[9]
(b) Jones, C.; Stasch, A. Top. Organomet. Chem. 2013, 45, 73.
[9]
(c) Ma, M.; Wang, W.; Yao, W. Chin. J. Org. Chem. 2016, 36, 72 (in Chinese).
[9]
(马猛涛, 王未凡, 姚薇薇, 有机化学, 2016, 36, 72.)
[10]
Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
[11]
Wang, W.; Luo, M.; Li, J.; Pullarkat, S. A.; Ma, M. Chem. Commun. 2018, 54, 3042.
[12]
Liu, H.-Y.; Schwamm, R. J.; Neale, S. E.; Hill, M. S.; McMullin, C. L.; Mahon, M. F. J. Am. Chem. Soc. 2021, 143, 17851.
[13]
Liu, H.-Y.; Neale, S. E.; Hill, M. S.; Mahon, M. F.; McMullin, C. L.; Richards, E. Angew. Chem., Int. Ed. 2023, 62, e202213670.
[14]
(a) Ren, W.; Gu, D. Inorg. Chem. 2016, 55, 11962.
[14]
(b) Ren, W.; Fang, X.; Sun, W.; Gu, D.; Yu, Y. J. Organomet. Chem. 2017, 842, 47.
[14]
(c) Freeman, L. A.; Walley, J. E.; Obi, A. D.; Wang, G.; Dickie, D. A.; Molino, A.; Wilson, D. J. D.; Gilliard, R. J. Inorg. Chem. 2019, 58, 10554.
[15]
Kaim, W. Inorg. Chem. 2011, 50, 9752.
[16]
Gentner, T. X.; R?sch, B.; Ballmann, G.; Langer, J.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2019, 58, 607.
[17]
Pan, J.; Zhang, L.; He, Y.; Yu, Q.; Tan, G. Organometallics 2021, 40, 3365.
[18]
(a) J?drzkiewicz, D.; Mai, J.; Langer, J.; Mathe, Z.; Patel, N.; DeBeer, S.; Harder, S. Angew. Chem., Int. Ed. 2022, 61, e202200511.
[18]
(b) J?drzkiewicz, D.; Langer, J.; Harder, S. Z. Anorg. Allg. Chem. 2022, 648, e202200138.
[19]
R?sch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Harder, S. Nature 2021, 592, 717.
[20]
Mondal, R.; Evans, M. J.; Rajeshkumar, T.; Maron, L.; Jones, C. Angew. Chem., Int. Ed. 2023, 62, e202308347.
[21]
(a) Buchner, M. R. Chem. Commun. 2020, 56, 8895.
[21]
(b) Buchner, M. R. Chem. Eur. J. 2019, 25, 12018.
[21]
(c) Perera, L. C.; Raymond, O.; Henderson, W.; Brothers, P. J.; Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264.
[21]
(d) Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. Angew. Chem., Int. Ed. 2016, 55, 10562.
[21]
(e) Iversen, K. J.; Couchman, S. A.; Wilson, D. J. D.; Dutton, J. L. Coord. Chem. Rev. 2015, 297, 40.
[21]
(f) Puchta, R. Nat. Chem. 2011, 3, 416.
[21]
(g) Couchman, S. A.; Holzmann, N.; Frenking, G.; Wilson, D. J. D.; Dutton, J. L. Dalton Trans. 2013, 42, 11375.
[22]
Arrowsmith, M.; Braunschweig, H.; Celik, M. A.; Dellermann, T.; Dewhurst, R. D.; Ewing, W. C.; Hammond, K.; Kramer, T.; Krummenacher, I.; Mies, J.; Radacki, K.; Schuster, J. K. Nat. Chem. 2016, 8, 890.
[23]
Paparo, A.; Smith, C. D.; Jones, C. Angew. Chem., Int. Ed. 2019, 58, 11459.
[24]
Wang, G.; Walley, J. E.; Dickie, D. A.; Pan, S.; Frenking, G.; Gilliard, R. J. J. Am. Chem. Soc. 2020, 142, 4560.
[25]
Czernetzki, C.; Arrowsmith, M.; Fantuzzi, F.; G?rtner, A.; Tr?ster, T.; Krummenacher, I.; Schorr, F.; Braunschweig, H. Angew. Chem., Int. Ed. 2021, 60, 20776.
[26]
Czernetzki, C.; Arrowsmith, M.; Endres, L.; Krummenacher, I.; Braunschweig, H. Inorg. Chem. 2024, 63, 2670.
[27]
Pearce, K. G.; Hill, M. S.; Mahon, M. F. Chem. Commun. 2023, 59, 1453.
[28]
Boronski, J. T.; Crumpton, A. E.; Wales, L. L.; Aldridge, S. Science 2023, 380, 1147.
[29]
Boronski, J. T.; Thomas-Hargreaves, L. R.; Ellwanger, M. A.; Crumpton, A. E.; Hicks, J.; Bekis, D. F.; Aldridge, S.; Buchber, M. R. J. Am. Chem. Soc. 2023, 145, 4408.
[30]
Boronski, J. T.; Crumpton, A. E.; Roper, A. F.; Aldridge, S. Nat. Chem. 2024, 16, 1295.
[31]
Berthold, C.; Maurer, J.; Klerner, L.; Harder, S.; Buchner, M. R. Angew. Chem., Int. Ed. 2024, 63, e202408422.
[32]
(a) Westerhausen, M.; Koch, A.; G?rls, H.; Krieck, S. Chem. Eur. J. 2017, 23, 1456.
[32]
(b) Wei, B.; Li, H.; Zhang, W.-X.; Xi, Z. Organometallics 2015, 34, 1339.
[32]
(c) Wei, B.; Liu, L.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2017, 56, 9188.
[32]
(d) Wei, B.; Zhang, W.-X.; Xi, Z. Dalton Trans. 2018, 47, 12540.
[33]
(a) Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Science 2017, 358, 1168.
[33]
(b) Harder, S. Chem. Rev. 2010, 110, 3852.
[33]
(c) Hu, H.; Cui, C. Organometallics 2012, 31, 1208.
[33]
(d) Li, H.; Wang, X.-Y.; Wei, B.; Xu, L.; Zhang, W.-X.; Pei, J.; Xi, Z. Nat. Commun. 2014, 5, 4508.
[33]
(e) Wei, B.; Li, H.; Zhang, W.-X.; Xi, Z. Organometallics 2016, 35, 1458.
[33]
(f) Zhang, X.-Y.; Du, H.-Z.; Zhai, D.-D.; Guan, B.-T. Org. Chem. Front. 2020, 7, 1991.
[33]
(g) Li, T.; McCabe, K. N.; Maron, L.; Leng, X.; Chen, Y. ACS Catal. 2021, 11, 6348.
[33]
(h) Zheng, X.; Rosal, I.; Xu, X.; Yao, Y.; Maron, L.; Xu, X. Inorg. Chem. 2021, 60, 5114.
[34]
(a) Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Science 2018, 361, 912.
[34]
(b) Zhao, L.; Pan, S.; Zhou, M.; Frenking, G. Science 2019, 365, 6453.
[34]
(c) Zhou, M.; Frenking, G. Acc. Chem. Res. 2021, 54, 3071.
[34]
(d) Huo, B.; Sun, R.; Jin, B.; Hu, L.; Bian, J.-H.; Guan, X.-L.; Yuan, C.; Lu, G.; Wu, Y.-B. Chem. Commun. 2021, 57, 5806.
[35]
Krieck, S.; G?rls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977.
[36]
Huang, W.; Diaconescu, P. L. Dalton Trans. 2015, 44, 15360.
[37]
R?sch, B.; Gentner, T. X.; Langer, J.; F?rber, C.; Eyselein, J.; Zhao, L.; Ding, C.; Frenking, G.; Harder, S. Science 2021, 371, 1125.
[38]
(a) Li, J.; Yin, J.; Yu, C.; Zhang, W.; Xi, Z. Acta Chim. Sinica 2017, 75, 733 (in Chinese).
[38]
(李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.)
[38]
(b) Ma, X.; Lei, M. Prog. Chem. 2013, 25, 1325 (in Chinese).
[38]
(马雪璐, 雷鸣, 化学进展, 2013, 25, 1325.)
[38]
(c) Fan, Y.; Cheng, J.; Gao, Y.; Shi, M.; Deng, L. Acta Chim. Sinica 2018, 76, 445 (in Chinese).
[38]
(凡一明, 程骏, 高亚飞, 施敏, 邓亮, 化学学报, 2018, 76, 445.)
[39]
Mondal, R.; Yuvaraj, K.; Rajeshkumar, T.; Maron, L.; Jones, C. Chem. Commun. 2022, 58, 12665.
[40]
(a) Mai, J.; Morasch, M.; J?drzkiewicz, D.; Langer, J.; R?sch, B.; Harder, S. Angew. Chem., Int. Ed. 2023, 62, e202212463.
[40]
(b) Mai, J.; R?sch, B.; Langer, J.; Grams, S.; Morasch, M.; Harder, S. Eur. J. Inorg. Chem. 2023, 26, e202300421.
[41]
Liu, Y.; Zhu, K.; Chen, L.; Liu, S.; Ren, W. Inorg. Chem. 2022, 61, 20373.
[42]
Wu, L.; Wang, Z.; Liu, Y.; Chen, L.; Ren, W. Dalton Trans. 2023, 52, 7175.
[43]
(a) Shi, X.; Liu, Z.; Cheng, J. Chin. J. Org. Chem. 2019, 39, 1557 (in Chinese).
[43]
(石向辉, 刘知洲, 程建华, 有机化学, 2019, 39, 1557.)
[43]
(b) Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Angew. Chem., Int. Ed. 2019, 58, 4356.
[43]
(c) Jochmann, P.; Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 4452.
[43]
(d) Leich, V.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2016, 55, 4794.
[43]
(e) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2017, 56, 12367.
[44]
(a) Mai, J.; R?sch, B.; Patel, N.; Langer, J.; Harder, S. Chem. Sci. 2023, 14, 4724.
[44]
(b) Mai, J.; Maurer, J.; Langer, J.; Harder, S. Nat. Synth. 2024, 3, 368.
[45]
Stegner, P.; F?rber, C.; Zenneck, U.; Knüpfer, C.; Eyselein, J.; Wiesinger, M.; Harder, S. Angew. Chem., Int. Ed. 2021, 60, 4252.
[46]
Guan, Y.; Liu, C.; Wang, Q.; Gao, W.; Hansen, H. A.; Guo, J.; Vegge, T.; Chen, P. Angew. Chem., Int. Ed. 2022, 61, e202205805.
[47]
Townrow, O. P. E.; F?rber, C.; Zenneck, U.; Harder, S. Angew. Chem., Int. Ed. 2024, 63, e202318428.
Outlines

/