Article

Theoretical Construction of Hittorf’s Violet Phosphorene/SnS2 van der Waals Heterojunction as Direct Photocatalyst for Overall Water Splitting

  • Yi-Lin Lu ,
  • Shengjie Dong ,
  • Fangchao Cui ,
  • Tingting Bo ,
  • Zhuo Mao
Expand
  • a College of Physical Science and Technology, Bohai University, Jinzhou 121007, China
    b Faculty of Electronic Information Engineering, Guangdong Baiyun University, Guangzhou 510450, China
    c College of Food Science and Engineering, Bohai University, Jinzhou 121007, China
    d School of Mathematics, Physics and Statistics, Shanghai Polytechnic University, Shanghai 201209, China
    e Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin 300192, China

Received date: 2024-12-27

  Online published: 2025-03-18

Supported by

Scientific Research Fund of the Education Department of Liaoning Province, China(LJKQZ20222272)

Abstract

Seeking efficient direct Z-scheme heterojunction photocatalysts for water splitting and hydrogen production is an effective way to solve energy crises and environmental problems. Here, we used first-principles calculations based on density functional theory (DFT) to systematically study the electronic structure, optical properties, and photocatalytic performance of the constructed two-dimensional Hittorf’s violet phosphorene (HP)/SnS2 heterojunction. To achieve more accurate results, the Heyd-Scuseria-Ernzerhof (HSE06) calculations are performed to verify the results, especially for the calculations of the electronic structure and the optical properties. The hybrid functional computational results showed that the HP/SnS2 heterojunction is a direct bandgap semiconductor with a bandgap value of 1.30 eV. The staggered band structure and the built-in electric field induced by interlayer charge transfer result in a direct Z-scheme carrier migration mechanism, giving it a stronger oxidation-reduction ability to trigger water-splitting reactions. Under illumination conditions, the external voltage provided by the photogenerated electrons on the HP side and the photogenerated holes on the SnS2 side can significantly reduce the Gibbs free energy of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), which is substantially lower than Gibbs free energy required for single-layer HP and two-dimensional SnS2 to catalyze the same reaction, resulting in excellent hydrogen evolution activity and oxygen evolution activity. In addition, theoretical calculations showed that biaxial strain can effectively regulate the photocatalytic ability and light absorption characteristics of HP/SnS2 heterojunction. We found that at a strain of –10%, the HP/SnS2 heterojunction exhibits the strongest light absorption ability under visible light, with a light absorption coefficient of up to 1.71×106 cm-1. By comparing the oxidation-reduction potentials of water, it was found that HP/SnS2 heterojunction can meet the conditions for photocatalytic overall water splitting when the strain ranges from –10% to 8%. Its solar to hydrogen (STH) conversion efficiency can reach up to 54.90%, far exceeding the commercial requirement of 10%. In summary, HP/SnS2 heterojunction is an excellent candidate material for overall photocatalytic water splitting under visible light.

Cite this article

Yi-Lin Lu , Shengjie Dong , Fangchao Cui , Tingting Bo , Zhuo Mao . Theoretical Construction of Hittorf’s Violet Phosphorene/SnS2 van der Waals Heterojunction as Direct Photocatalyst for Overall Water Splitting[J]. Acta Chimica Sinica, 2025 , 83(4) : 377 -389 . DOI: 10.6023/A24120382

References

[1]
Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[2]
Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Nat. Commun. 2014, 5, 3783.
[3]
Voiry, D.; Shin, H. S.; Loh, K. P.; Chhowalla, M. Nat. Rev. Chem. 2018, 2, 0105.
[4]
Jin, H.; Guo, C.; Liu, X.; Liu, J.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z. Chem. Rev. 2018, 118, 6337.
[5]
Wu, Y.; Zhang, D.; Yin, H.; Chen, Z.; Zhao, W.; Chi, Y. Acta Chim. Sinica 2023, 81, 1148. (in Chinese)
[5]
(吴宇晗, 张栋栋, 尹宏宇, 陈正男, 赵文, 匙玉华, 化学学报, 2023, 81, 1148.)
[6]
Huang, G.; Li, K.; Luo, Y.; Zhang, Q.; Pan, Y.; Gao, H. Acta Chim. Sinica 2024, 82, 314. (in Chinese)
[6]
(黄广峥, 李坤玮, 罗艳楠, 张强, 潘远龙, 高洪林, 化学学报, 2024, 82, 314.)
[7]
Hou, F.; Liu, F.; Wu, H.; Qasim, M.; Chen, Y.; Duan, Y.; Feng, Z.; Liu, M. Chinese J. Chem. 2022, 41, 173.
[8]
Liu, J.; Li, C.; Liu, Y.; Wang, Y.; Fang, Q. Acta Chim. Sinica 2023, 81, 884. (in Chinese)
[8]
(刘建川, 李翠艳, 刘耀祖, 王钰杰, 方千荣, 化学学报, 2023, 81, 884.)
[9]
Wang, D.; Lan, Z.; Li, Y.; Huang, Y.; Yin, K.; Yang, L.; Bai, L.; Wei, D.; Yang, H.; Chen, H.; Luo, M. Chinese J. Chem. 2024, 43, 308.
[10]
Fong, C. Y.; Cohen, M. L. Phys. Rev. B 1972, 5, 3095.
[11]
Li, X.; Zhu, J.; Li, H. Appl. Catal. B 2012, 174, 123.
[12]
Wei, R.; Hu, J.; Zhou, T.; Zhou, X.; Liu, J.; Li, J. Acta Mater. 2014, 66, 163.
[13]
Guo, X.; Zhang, F.; Zhang, Y.; Hu, J. J. Mater. Chem. A 2023, 11, 7331.
[14]
Lin, J.; Liu, Y.; Liu, Y.; Huang, C.; Liu, W.; Mi, X.; Fan, D.; Fan, F.; Lu, H.; Chen, X. ChemSusChem 2019, 12, 961.
[15]
Sun, L.; Zhou, W.; Liu, Y.; Yu, D.; Liang, Y.; Wu, P. Appl. Surf. Sci. 2016, 389, 484.
[16]
Moniz, S. J. A.; Shevlin, S. A.; Martin, D. J.; Guo, Z.-X.; Tang, J. Energy Environ. Sci. 2015, 8, 731.
[17]
Marschall, R. Adv. Funct. Mater. 2014, 24, 2421.
[18]
Nasir, J. A.; Munir, A.; Ahmad, N. T. u.; Haq, Z.; Khan, Z.; Rehman, Z. Adv. Mater. 2021, 33, 2105195.
[19]
Liu, X.; Zhang, Q.; Ma, D. Solar RRL 2021, 5, 2000397.
[20]
Chen, X.; Han, W.; Yue, Q.; Zhang, Q.; Liang, Y.; Peng, C.; Yin, H. Inorg. Chem. 2023, 62, 17954.
[21]
Chen, C.; Shen, M.; Li, Y. Chem. Phys. 2021, 548, 111230.
[22]
Wang, J.; Luan, L.; Chen, J.; Zhang, Y.; Wei, X.; Fan, J.; Ni, L.; Liu, C.; Yang, Y.; Liu, J.; Tian, Y. Mater. Sci. Semicond. Process. 2023, 155, 107225.
[23]
Wang, B.; Wang, X.; Yuan, H.; Zhou, T.; Chang, J.; Chen, H. Int. J. Hydrogen Energy 2020, 45, 2785.
[24]
Zhang, L.; Huang, H.; Zhang, B.; Gu, M.; Zhao, D.; Zhao, X.; Li, L.; Zhou, J.; Wu, K.; Cheng, Y.; Zhang, J. Angew. Chem. Int. Ed. 2020, 59, 1074.
[25]
Schusteritsch, G.; Uhrin, M.; Pickard, C. J. Nano Lett. 2016, 16, 2975.
[26]
Ricciardulli, A. G.; Wang, Y.; Yang, S.; Samorì, P. J. Am. Chem. Soc. 2022, 144, 3660.
[27]
Zhang, B.; Wang, Z.; Huang, H.; Zhang, L.; Gu, M.; Cheng, Y.; Wu, K.; Zhou, J.; Zhang, J. J. Mater. Chem. A 2020, 8, 8586.
[28]
Lu, Y. L.; Dong, S.; Zhou, W.; Dai, S.; Zhou, B.; Zhao, H.; Wu, P. Phys. Chem. Chem. Phys. 2018, 20, 11967.
[29]
Lu, Y.-L.; Dong, S. J.; Li, J. S.; Mao, Z.; Wu, Y. Q.; Yang, L.-L. J. Phys. Chem. Solids 2022, 169, 110863.
[30]
Wang, X.; Ma, M.; Zhao, X.; Jiang, P.; Wang, Y.; Wang, J.; Zhang, J.; Zhang, F. Small Structures 2023, 4, 2300123.
[31]
Li, H.; Zhang, L.; Li, R.; Du, W.; Wu, B.; Lei, W.; Yu, J.; Liu, G.; Tan, T.; Zheng, L.; Liu, X. Nano Today 2023, 51, 101885.
[32]
Zhao, X.; Gu, M.; Zhai, R.; Zhang, Y.; Jin, M.; Wang, Y.; Li, J.; Cheng, Y.; Xiao, B.; Zhang, J. Small 2023, 19, 2302859.
[33]
Li, H.; Li, R.; Jing, Y.; Liu, B.; Xu, Q.; Tan, T.; Liu, G.; Zheng, L.; Wu, L. Z. ACS Catal. 2024, 14, 7308.
[34]
Wang, X.; Wang, Y.; Ma, M.; Zhao, X.; Zhang, J.; Zhang, F. Small 2024, 20, 2311841.
[35]
Lu, Y.-L.; Dong, S.; Cui, F.; Zhang, K.; Liu, C.; Li, J.; Mao, Z. Int. J. Hydrogen Energy 2025, 101, 222.
[36]
Lu, Y. L.; Dong, S.; He, H.; Li, J.; Wang, X.; Zhao, H.; Wu, P. Comput. Mater. Sci. 2019, 163, 209.
[37]
Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; Xie, Y. Angew. Chem. Int. Ed. 2012, 51, 8727.
[38]
Liu, J.; Hua, E. J. Phys. Chem. C 2017, 121, 25827.
[39]
Sun, Y.; Cheng, H.; Gao, S.; Sun, Z.; Liu, Q.; Liu, Q.; Lei, F.; Yao, T.; He, J.; Wei, S.; Xie, Y. Angew. Chem. Int. Ed. 2012, 51, 8727.
[40]
Zhang, R.; Sun, F. W.; Zhang, Z. H.; Liu, J.; Tian, Y.; Zhang, Y.; Wei, X.; Guo, T. T.; Fan, J. B.; Ni, L.; Duan, L. Appl. Surf. Sci. 2021, 535, 147825.
[41]
Wang, Y. L.; Tian, Y.; Lang, Z. L.; Guan, W.; Yan, L. K. J. Mater. Chem. A 2018, 6, 21056.
[42]
Zhang, Z.; Xie, Z.; Liu, J.; Tian, Y.; Zhang, Y.; Wei, X.; Duan, L. Phys. Chem. Chem. Phys. 2020, 22, 5873.
[43]
Zhang, Y.; Qiang, Z. B.; Ding, J. X.; Xie, K. X.; Duan, L.; Ni, L. CrystEngComm 2024, 26, 2621.
[44]
Wang, F.; Yang, C. L.; Wang, M. S.; Ma, X. J. Power Sources 2022, 532, 231352.
[45]
Garg, P.; Rawat, K. S.; Bhattacharyya, G.; Kumar, S.; Pathak, B. ACS Appl. Nano Mater. 2019, 2, 4238.
[46]
Peng, B.; Xu, L.; Zeng, J.; Qi, X.; Yang, Y.; Ma, Z.; Huang, X.; Wang, L. L.; Shuai, C. Catal. Sci. Technol. 2021, 11, 3059.
[47]
Bouziani, I.; Essaoudi, I.; Ahuja, R.; Ainane, A. Int. J. Hydrogen Energy 2023, 48, 35542.
[48]
He, C.; Han, F.; Zhang, W. Chin. Chem. Lett. 2022, 33, 404.
[49]
Zhang, W. X.; Yin, Y.; He, C. J. Phys. Chem. Lett. 2021, 12, 5064.
[50]
Dai, Z. N.; Sheng, W.; Xu, Y. J. At. Mol. Phys. 2024, 41, 061001. (in Chinese)
[50]
(戴卓旎, 盛威, 许英, 原子与分子物理学报, 2024, 41, 061001.)
[51]
Wang, J.; Chang, K.; Sun, Z.; Lee, J. H.; Tackett, B. M.; Zhang, C.; Chen, J. G.; Liu, C. J. Appl. Catal. B 2019, 251, 162.
[52]
Xu, K.; Huang, X.; Yang, Z. H. J. At. Mol. Phys. 2025, 42, 061002. (in Chinese)
[52]
(许康, 黄欣, 杨志红, 原子与分子物理学报, 2025, 42, 061002.)
[53]
Xia, F.; Yang, F. Energ. Fuel. 2022, 36, 4992.
[54]
Wirth, J.; Neumann, R.; Antonietti, M.; Saalfrank, P. Phys. Chem. Chem. Phys. 2014, 16, 15917.
[55]
Zhai, P.; Xia, M.; Wu, Y.; Zhang, G.; Gao, J.; Zhang, B.; Cao, S.; Zhang, Y.; Li, Z.; Fan, Z.; Wang, C.; Zhang, X.; Miller, J. T.; Sun, L.; Hou, J. Nat. Commun. 2021, 12, 4587.
[56]
Zhang, X.; Chen, A.; Zhang, Z.; Jiao, M.; Zhou, Z. J. Mater. Chem. A 2018, 6, 11446.
[57]
Zhao, Y.; Ma, D.; Zhang, J.; Lu, Z.; Wang, Y. Phys. Chem. Chem. Phys. 2019, 21, 20432.
[58]
Yuan, J.; Wang, C.; Liu, Y.; Wu, P.; Zhou, W. J. Phys. Chem. C 2018, 123, 526.
[59]
Zhou, S.; Yang, X.; Pei, W.; Liu, N.; Zhao, J. Nanoscale 2018, 10, 10876.
[60]
Pei, W.; Zhou, S.; Bai, Y.; Zhao, J. Carbon 2018, 133, 260.
[61]
Fu, C. F.; Sun, J.; Luo, Q.; Li, X.; Hu, W.; Yang, J. Nano Lett. 2018, 18, 6312.
[62]
Liang, K.; Wang, J.; Wei, X.; Zhang, Y.; Yang, Y.; Liu, J.; Duan, L. Physica E 2024, 155, 115825.
[63]
Xu, L.; Yang, Y.; Xin, C.; Jin, Z.; Chao, Y.; Wu, C.; Luo, K. W.; Wang, L. L.; Chen, T. Mater. Today Commun. 2024, 40, 109667.
[64]
Chen, X.; Han, W.; Jia, M.; Ren, F.; Peng, C.; Gu, Q.; Wang, B.; Yin, H. J. Phys. D: Appl. Phys. 2022, 55, 215502.
[65]
Chen, X.; Han, W.; Tian, Z.; Yue, Q.; Peng, C.; Wang, C.; Wang, B.; Yin, H.; Gu, Q. J. Phys. Chem. C 2023, 127, 6347.
[66]
Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, R558.
[67]
Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
[68]
Blochl, P. E. Phys. Rev. B 1994, 50, 17953.
[69]
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
[70]
Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
[71]
Grimme, S. J. Comput. Chem. 2006, 27, 1787.
[72]
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207.
[73]
Martyna, G. J.; Klein, M. L.; Tuckerman, M. J. Chem. Phys. 1992, 97, 2635.
Outlines

/