Reivew

Mechanochemistry : Pollutant Transformation and Environmental Applications

  • 张聿棋 ,
  • 刘金泽 ,
  • 薛东旭 ,
  • 史昱翔 ,
  • 张伟贤
Expand
  • State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092

Received date: 2025-03-12

  Online published: 2025-05-14

Supported by

National Key Research and Development Program of China (2022YFC3702102) and Development Program of Guangdong Province (No. 2020B0202080001).

Abstract

Mechanochemistry (MC) is a subfield of chemistry that focuses on chemical transformation driven by mechanical energy. By manipulating mechanical energy to induce the combination and rearrangement of chemical bonds, MC stipulates unique reaction pathways and products that are not achievable by conventional chemical reactions. The high-intensity energy input is especially advantageous for transformation and remediation of persistent environmental pollutants. One prominent example is the mechanochemical degradation of perfluorooctane sulfonate (PFOS), a harmful environmental contaminant. By breaking the C-F bonds without the need for additional chemical reagents, mechanochemical methods can achieve nearly complete defluorination, offering a green approach to detoxify persistent pollutants. Recent research on piezo-catalytic degradation of organic pollutants has demonstrated that the method consistently maintains degradation efficiencies greater than 97% across five cycles. This highlights its robustness and potential for widespread applications in environmental remediation. MC has also contributed to the synthesis of novel materials, including single-atom catalysts (SACs), nanoscale zero-valent iron (nZVI), and metal-organic frameworks (MOFs). The fundamentals of MC include mechanical activation, introduction of structural defects, and enhancement of reaction kinetics. Early studies have successfully applied mechanochemical processes to solid waste treatment and the recovery of toxic heavy metals, such as the selective extraction of valuable metals from spent lithium-ion battery cathodes, which led to an increase in the separation factor from 56.9 to 1,475. As the field continues to evolve, future research is needed to deepen our understanding on mechanochemistry, particularly in the areas of water treatment and hazardous solid waste management. This will help address challenges associated with high costs, toxic chemical reagents, and byproducts of hazardous wastes, which are enduring challenges in environmental science and technology.

Cite this article

张聿棋 , 刘金泽 , 薛东旭 , 史昱翔 , 张伟贤 . Mechanochemistry : Pollutant Transformation and Environmental Applications[J]. Acta Chimica Sinica, 0 : 0 . DOI: 10.6023/A25030074

References

[1] James,S.L.;Adams,C.J.;Bolm,C.;Braga,D.;Collier,P.;Friščić,T.;Grepioni,F.;Harris,K.D.M.;Hyett,G.;Jones,W.;Krebs,A.;Mack,J.;Maini,L.;Orpen,A.G.;
Parkin,I.P.; Shearouse,W.C.;Steed,J.W.;Waddell,D. C. Chem. Soc. Rev. 2012, 41(1), 413-447.
[2] TAKACS, L. Chem. Soc. Rev. 2013, 42(18), 7649-7659.
[3] Šepelák V.; Düvel A.; Wilkening M.;Becker K.; Heitjans P. Chem. Soc. Rev. 2013, 42(18), 7507-7520.
[4] Gomollón-Bel, F. Chem. Int. 2019, 41(2), 12-17.
[5] O’Neill, R. T.; Boulatov, R. Nat. Rev. Chem. 2021, 5(3), 148-167.
[6] Zholdassov Y. S.; Yuan L.; Garcia S. R.; et al.Science. 2023, 380(6649), 1053-1058.
[7] Wang Z.; Berbille A.; Feng Y.-W.; Li S.-T.; Zhu L.-P.; Tang W. Nat.Commun. 2022, 13(1), 130.
[8] Trang,B.; Li,Y.-L.; Xue X.-S.; Ateia, M.; Houk, K. N.;Dichtel, W. R. Science. 2022, 377(6608), 839.
[9] Shahid M. K.; Kashif A.; Fuwad A.; Choi Y. Coord. Chem. Rev. 2021, 442.
[10] Gobindlal K.; Zujovic Z.; Jaine J.; Weber C. C.;Sperry J. Environ. Sci. Technol. 2023, 57(1), 277-85.
[11] Tan Q.; Li J. Environ. Sci. Technol. 2015, 49(10), 5849-5861.
[12] Amrute A. P.;De Bellis, J.; Felderhoff, M.; Schüth, F. Chem.-Eur. J. 2021, 27(23), 6819-6847.
[13] Hu Y.; Li B.; Yu C.; Fang H.; Li Z. Mater.Today. 2023, 63, 288-312.
[14] Li P.; Cheng F.-F.; Xiong W.-W.; Zhang Q. Inorg. Chem. Front. 2018, 5(11), 2693-2708.
[15] Yang N.; Yang S.; Ma Q.; Beltran C.; Guan Y.; Morsey M.; Brown E.; Fernando S.; Holsen T. M.; Zhang W.; Tang,Y. Environ. Sci. Technol. Lett. 2023, 10(2), 198-203.
[16] Wang M.; Liu K.; Xu Z.; Dutta S.; Valix M.; Alessi D. S.; Huang, L; Zimmerman, J. B.; Tsang D. C.W. Environ. Sci. Technol. 2023. 57(9), 3940-3950.
[17] Zhang S.; Zhang C.; Zhang X.; Ma E.Waste Manag. 2023, 161, 245-253.
[18] Yue L.; Ke K.; Amirkhosravi M.; Gray T. G.; Manas-Zloczower, I. ACS Appl. Bio Mater. 2021, 4(5), 4176-4183.
[19] Schneidermann C.; Otto P.; Leistenschneider D.; Grätz S.; Claudia Eßbach, C.; Borchardt,L. Beilstein J. Nanotechnol. 2019, 10, 1618-1627.
[20] Zhang J.; Han K.; Jiao W.; Su P.; Wang D.; Zhu J.; Zhu M.; Li L. J. Hazard. Mater. 2024, 472,134489.
[21] Mallampati S. R.; Mitoma Y.; Okuda T.; Sakita S.; Kakeda M. Environ. Chem. Lett. 2012, 10(2), 201-207.
[22] Geng X.; Zhong L.; Liu X.; Ding,X.; Huang T.; Xu Y.; Duan Y. Chem. Eng. J. 2023, 454,140264.
[23] Gong L.; Chen J.; Hu Y.; He K.; Bylaska E. J.; Trantyek P. G.; He F. Environ. Sci. Technol. 2023, 57(26), 9811-9821.
[24] Qian K.; Chen H.; Li W.; Ao Z.; Wu Y.; Guan X. Environ. Sci. Technol. 2021, 55(10), 7034-7043.
[25] Wang X.; Ding S.; Yue T.; Zhu Y.; Fang M.; Li X.; Xiao G.; Zhu Y.; Dai L.Nano Energy. 2021, 82, 105689.
[26] Liang J.; Gvilava V.; Jansen C.; Öztürk S.; Spieß A.; Lin J.; Xing X.; Sun Y.; Wang H.; Janiak C. Angew. Chem. Int. Ed. 2021, 60(28), 15365-15370.
[27] Hu P.; Liang X.; Yaseen M.; Li J.; Chen S.; Pang C.; Liao T.; Zhao Z. Chem. Eng. J. 2018, 332, 608-618.
[28] Field, J. Phys.Today. 2006, 59(5), 72-73.
[29] Baláž P.Mechanochemistry in Nanoscience and Minerals Engineerin, Springer Berlin Heidelberg, 2008, 1-102.
[30] Fink, M. Mater.Corros. 1968, 19(2), 188-189.
[31] Baláž, M. Environ.Mechanochem. 2021.
[32] Lee Y. T.; More R. M. Phys. Fluids. 1984, 27(5), 1273-1286.
[33] Takacs, L. Chem. Soc. Rev. 2013, 42(18), 7649-7659.
[34] Piao Y.; Le K. C.Continuum Mech. Thermodyn. 2022, 34(3), 763-780.
[35] Heinicke G.; Hennig H. P.Tribochemistry: Akademie-Verlag, 1984.
[36] Vladimir, V. B. Russ. Chem. Rev. 2006, 75(3), 177.
[37] Michael P.;Sheidaee Mehr, S. K.; Binder, W. H. J. Polym. Sci. A Polym. Chem. 2017, 55(23), 3893-3907.
[38] Ansari A.; Kumar M.; Singhal H.; Chakera J. A.J. Appl. Phys. 2024, 135(14),143103.
[39] Liang Y.; Xu W.; Fang J.; Liu Z.; Chen D.; Pao T.; Yu Y.; Fang, Z. Appl. Catal. B-Environ. 2021, 295, 120279.
[40] Monti M.; Perin E.; Conterosito E.; Romagnolli U.; Muscato B.; Girotto M.; Scrivani M. T.; Gianotti V. Resour. Conserv. Recycl. 2023, 188, 106691.
[41] Sanes J.; Sánchez C.; Pamies R.; Avilés M.; Bermúdez M. Materials. 2020, 13(3), 549.
[42] Karippal J. J.;Narasimha Murthy, H. N.; Rai, K. S.; Krishna, M.; Sreejith, M. J. Mater. Eng. Perform. 2010, 19(8), 1143-1149.
[43] Berkowski K. L.; Potisek S. L.; Hickenboth C. R.; Moore J. S.Macromolecules. 2005, 38(22), 8975-8980.
[44] Hickenboth C. R.; Moore J. S.; White S. R.; Nancy R. Sottos, N. R.; Jerome Baudry, J.; Scott R. Wilson, S. R. Nature. 2007, 446(7134), 423-427.
[45] Lesko T.; Colussi A. J.; Hoffmann M. R. Environ. Sci. Technol. 2006, 40(21), 6818-6823.
[46] Zheng Y.; Yu Z.; Ou H.; Asiri A. M.; Chen Y.; Wang X. Adv. Funct. Mater. 2018, 28(10),1705407.
[47] Sutkar V. S.; Gogate P. R. Chem. Eng. J. 2009,155(1-2), 26-36.
[48] Sung J.; Robb M. J.; White S. R.; Moore J.; Scottos N. R.J. Am. Chem. Soc. 2018, 140(15), 5000-5003.
[49] Naik S. S.; Lee S. J.; Theerthagiri J.; Yu Y.; Choi M. Y.J. Hazard. Mater. 2021, 418, 126269.
[50] Chen H.-C.; Li X. Chem.Ind & Eng. Pro. 2021,40(11), 6332-6346. (in Chinese).
(陈惠超,李雪,化工进展, 2021,40(11), 6332-6346.)
[51] Ardila-Fierro, K. J.; Hernandez, J. G. Chemsuschem. 2021, 14(10), 2145-2162.
[52] Guo X.; Xiang D.; Duan G.; Mou P.Waste Manag. 2009, 30(1), 4-10.
[53] Cagnetta G.; Robertson J.; Huang J.; Zhang K.; Yu G. J. Hazard. Mater. 2016, 313, 85-102.
[54] Nasser A.; Mingelgrin U. Appl. Clay Sci.2012, 67-68, 141-150.
[55] Hadas J.-E.; Ahmed N.; Julius B. A.; Mingelgrin U. Environ. Sci. Technol. 2014, 48(10), 5876-5882.
[56] Singh S.; Yenkie M. K.N. Water, Air, Soil Pollut. 2004, 156, 275-286.
[57] Rezaei R.; Mohseni M. Chem. Eng. J. 2017, 310, 457-463.
[58] Napola A.; Pizzigallo M. D.R.; Leo, P. D.; Spagnuolo, M.; Ruggiero, P. Chemosphere 2006, 65(9), 1583-1590.
[59] Zhang J.; Han K.; Jiao W.; Su P.; Wang D.; Zhu J.; Zhu M.; Li L. J. Hazard. Mater. 2024, 472, 134489.
[60] Samara M.; Nasser A.; Mingelgrin U. Chemosphere 2016, 160, 266-272.
[61] Cagnetta G.; Zhang Q.; Huang J.; Lu M.; Wang B.; Wang Y.; Deng S.; Yu G. Chem. Eng. J. 2017, 316, 1078-1090.
[62] Nasser A.; Sposito G.; Cheney M. A.Colloids Surf. A 2000, 163(2), 117-123.
[63] Cheney M. A.; Sposito G.; McGrath, A. E.; Criddle, R. S. Colloids Surf. A 1996, 107, 131-140.
[64] Nasser A.; Buchanovsky N.; Gerstl Z.; Mingelgrin U. Chemosphere 2008, 75(1), 20-27.
[65] Nasser A.; Mingelgrin U. Chemosphere 2014, 107, 175-179.
[66] Leo P. D.; Pizzigallo M. D. R.; Ancona V.; Benedetto F. D.; Mesto, E; Schingaro, E; Ventruti, G. J. Hazard. Mater.2013, 244-245(Jan.15), 303-310.
[67] Pizzigallo M. D.R.; Leo, P. D.; Ancona, V.; Spagnuolo, M.; Schingaro, E. Chemosphere 2010, 82(4), 627-634.
[68] Zhang W.; Huang J.; Xu F.; Deng S.; Zhu W.; Yu G. J. Hazard. Mater. 2011, 198, 275-281.
[69] Lu S.; Huang J.; Peng Z.; Li X.; Yan J. Chem. Eng. J.2012, 195-196, 62-68.
[70] Yu Y.; Huang J.; Zhang W.; Zhang K.; Deng S.; Yu G. Chemosphere 2013, 90(5), 1729-1735.
[71] Zhang W.; Wang H.; Jun H.; Yu M.; Wang F.; Zhou L.; Yu G. Chem. Eng. J. 2014, 239, 185-191.
[72] Ndayiragije S.; Zhang Y.; Zhou Y.; Song Z.; Wang N.; Majima T.; Zhu, L. Appl. Catal. B-Environ. 2022, 307, 121168.
[73] Zhang K.; Huang J.; Yu G.; Zhang Q.; Deng S.; Wang B. Environ. Sci. Technol. 2013, 47(12), 6471-6477.
[74] Hu A.; Cagnetta G.; Huang J.; Yu G. J. Hazard. Mater. 2018, 360, 71-81.
[75] Cagnetta G.; Huang J.; Wang B.; Deng S.; Yu G. Chem. Eng. J. 2016, 291, 30-38.
[76] Gang C.; Huang J.; Yao Y. Crit. Rev. Environ. Sci.Technol. 2018, 48(7-9), 723-771.
[77] Chen Z.; Lu S.; Tang M.; Lin X.; Qiu Q.; He H.; Yan J. Sci.Total Environ. 2019, 694, 133813.
[78] Geng X.; Zhong L.; Liu, X; Deng X.; Huang T.; Xu Y.; Duan Y. Chem. Eng. J. 2023, 454(P3), 140264.
[79] Kajdas C.; Kulczycki A.; Ozimina D. Tribol.Int. 2017, 107, 144-151.
[80] Feng Y.; Ling L.; Wang Y.; Xu Z.; Cao F.; Li H.; Bian Z. Nano Energy 2017, 40, 481-486.
[81] Yang B.; Chen B.; Guo X.; Wang L.; Xu T.; Bian J.; Yang Y.; Liu Q.; Du Y.; Lou X. J. Mater. Chem. C 2020, 8(42), 14845-14854.
[82] Qu R; Wan S,X.; Zhang, X.; Wang, X.; Xue, L.; Wang, Q.; Cheng, G.-J.; Dai, L.; Lian, Z. Angew. Chem. 2024, 136(28).
[83] Wang Z.-L.; Dong X.; Li X.-F.; Tang, W; Feng, Y; Li, S. Nat.Commun. 2024, 15(1), 757.
[84] Liang Z.; Peng G.; Hu J.; Hou H.; Cai C.; Yang X.; Chen S.; Liu L.; Liang S.; Xiao K.; Yuan S.; Zhou S.; Yang J.Waste Manag. 2022, 150, 290-300.
[85] Xie J.; Huang K.; Nie Z.; Yuan W.; Wang X.; Song Q.; Zhang X.; Zhang C.; Wang J.; Crittenden J. C. Resour. Conserv. Recycl. 2020, 168(18), 105261.
[86] Lin T.; Liang J.; Jin S.; Mu D.; Sun S.; Liu C.; Ning Y.; Song J.; Zhao L.; Dai C. Sep. Purif. Technol. 2024, 338, 126458.
[87] Liu Z.; Liu G.; Cheng L.; Gu J.; Yang J.; Yuan H.; Chen Y.; Wu Y. Sep. Purif. Technol. 2024, 335, 126174.
[88] Liu K; Wang M; Tsang D. C.W.; Liu, L; Tan, Q; Li, J. J. Hazard. Mater. 2022, 440, 129638.
[89] Che J.; Zhang W.; Xia L.; Chen J.; Wen P.; Ma B.; Wang C.ACS Sustainable Chem.Eng. 2021, 9(30), 10227-10239.
[90] Liu Z.; Lv Y.; Wang S.; Liu B.; Wenzel M.; Zhang Y.; Du H.; Weigand J. J. Sep. Purif. Technol. 2024, 347, 127484.
[91] Aydonat S.; Hergesell, A. H.; Seitzinger, C. L.; Lennarz, R.; Chang, G.; Sievers, C.; Meisner, J.; Vollmer, I.; Göstl, R. Polym. J. 2024, 56(4), 249-268.
[92] Jian H.; Huifang D.; Shouxu S. Adv. Mater. Sci. Eng. 2020, 2020, 1-12.
[93] Liu J.; Zhu H.; Fang D.; Huang X.; Zhang C.; Luo Y. J. Environ. Chem. Eng. 2023, 11(3), 110269.
[94] Kang P.; Yang S.; Bai S.; Wang Q. ACS Sustainable Chem.Eng. 2021, 9(35), 11778-11789.
[95] Tsuzuki, T. Commun.Chem. 2021, 4(1).
[96] Gao T.; Tang H.-J.; Zhang S.-Y.; Cao J.-W.; Wu Y.-N.; Chen J.; Wang Y.; Chen K.-J.J. Solid State Chem. 2021, 303, 122547.
[97] Yin Z.; Zhang Q.; Li S.; Cagnetta G.; Huang J.; Deng S.; Yu G. Sci.Total Environ. 2022, 825, 153992.
[98] Li S.; Yan W.; Zhang W.-X.Green Chem. 2009, 11(10), 1618-1626.
[99] Zhang Y.; Yang B.; Fan J.; Ma L. RSC Adv. 2016, 6(80), 76867-76873.
[100] Zou H.; Zhao J.; He F.; Zhong Z.; Huang J.; Zheng Y.; Zhang Y.; Yang Y.; Yu F.; Bashir M. A.; Gao B. J. Hazard. Mater. 2021, 413, 125252.
[101] Gao J.; Wang W.; Rondinone A. J.; He F.; Liang L. J. Hazard. Mater. 2015, 300, 443-450.
[102] Wang P.; Hu J.; Wang Y.; Liu T. J. Hazard. Mater. 2022, 435, 129050.
[103] Lu Y.; Li Z.; Li J.; Chen K.; Dong H.; Shou J.; Li Y. Chem. Eng. J. 2018, 349, 522-529.
[104] Qu J.; Li H.; Li Z.; Peng W.; Wang B.; Wang H.; Zhang G.; Hu Q.; Wang L.; Zhang Y. Environ.Res. 2024, 262, 119925.
[105] Wang P.; Hu J.; Liu T.; Han G.; Ma W.-M.; Li J. J. Clean. Prod. 2023, 385, 135513.
[106] Peng X.; Wu J.; Zhao Z.; Wang X.; Dai H.; Xu L.; Xu G.; Jian Y.; Hu F. Chem. Eng. J. 2022, 427, 130803.
[107] Du P.; Huang K.; Fan X.; Ma, j.; Hussain, N.; Wang, R.; Deng, B.; Ge, B.; Tang, H.; Zhang, R.; Lei, M.; Wu, H. Nano Res. 2022, 15(4), 3065-3072.
[108] Chen N.; Chen D.; Wei F.; Zhao S.; Luo Y. Chem. Phys. Lett. 2018, 705, 23-30.
[109] Wei F.; Ren Q.; Yu X.; Wang Y.; Chen H.; Liang Z. Environ.Res. 2024, 252, 118941.
[110] Chen D.; Feng P.-F.; Wei, F.-H. Chem. Eng. Process.Intensif. 2019, 135, 63-67.
[111] Wei F.; Zheng T.; Ren Q.; Chen H.; Peng J.; Ma Y.; Liu Z.; Liang Z.; Chen D.Green Process. Synth. 2022, 11(1), 595-603.
[112] Tanaka S.; Nagaoka T.; Yasuyoshi A.; Hasegawa Y.; Denayer J. F.M. Cryst. Growth Des. 2018, 18(1), 274-279.
[113] Hou S.; Wu Y.-N.; Feng L.; Chen W.; Wang Y.; Morlay C.; Li F.Dalton Trans. 2018, 47(7), 2222-2231.
[114] Wei F.-H.; Chen D.; Liang Z.; Zhao S.; Luo Y.Dalton Trans. 2017, 46(47), 16525-16531.
[115] Wu T. Y.; Guo N.; Teh C. Y.; Hay J. X.W. Adv. Ultrasound Technol. Environ. Remed. 2012.
[116] Gogate, P. R. Adv. Environ. Res. 2002, 6(3), 335-358.
[117] Dong Z.; Delacour C.; Carogher K. M.; Udepurkar A. P.; Kuhn S. Materials. 2020, 13(2), 344.
[118] Sutkar V. S.; Gogate P. R. Chem. Eng. J. 2009, 155(1-2), 26-36.
Outlines

/