Article

Conformational Conversion Strategy-Driven Solid-State Nanopore Enables Concentration-Sensitive Quantification of Biomarkers

  • Shang Jianyu ,
  • Wang Chaochao ,
  • Gao Xinran ,
  • Zhang Yin ,
  • Sha Jingjie
Expand
  • aJiangsu Key Laboratory for Design and Manufacturing of Precision Medicine Equipment, Southeast University, Nanjing 211189, China;
    bSchool of Mechanical Engineering, Southeast University, Nanjing 211189, China

Received date: 2025-04-27

  Online published: 2025-06-19

Supported by

National Natural Science Foundation of China (52361145851, 52075099).

Abstract

The quantitative detection of microRNA (miRNA) is of critical importance for the early diagnosis of cancers, particularly lung cancer, where specific miRNAs such as miRNA-21 have been identified as key biomarkers. However, the low abundance, short chain length, and high sequence homology of miRNAs present significant challenges in developing a rapid, low-cost, and concentration-sensitive detection platform. In this study, we investigate the detection of 22 nt single-stranded DNA (ssDNA), a surrogate for miRNA-21, using solid-state nanopores, and observe a saturation phenomenon in the capture rate at low concentrations, which limits the sensitivity of the detection. To elucidate this phenomenon, we propose a competition theoretical model based on Langmuir adsorption dynamics, which identifies spatial hindrance effects caused by the competitive adsorption of DNA molecules near the nanopore entrance as the primary factor limiting detection sensitivity. This hindrance effect is influenced by the physicochemical properties of DNA, the applied voltage, and the nanopore dimensions. Through numerical simulations, we further analyze the interplay of electrophoretic forces, electroosmotic flow, and electrostatic repulsion in the translocation dynamics of DNA molecules, providing a comprehensive understanding of the underlying mechanisms. To overcome these limitations, we introduce a conformational conversion strategy that transforms ssDNA into double-stranded DNA (dsDNA) through the addition of complementary strands. This strategy significantly reduces the spatial hindrance at the nanopore inlet and lowers the energy barrier for molecular translocation. Experimental results demonstrate that the conversion to dsDNA not only enhances the capture efficiency but also transforms the concentration-response relationship from nonlinear to linear, enabling more accurate quantification of low-concentration analytes. Furthermore, the conformational conversion reverses the translocation direction of the target biomarkers, improving the specificity and sensitivity of the detection process. Our findings reveal that the dsDNA-based approach achieves dual improvements in low-concentration sensitivity and voltage-dependent capture rates, providing a robust framework for the ultrasensitive detection of low-abundance biomarkers in complex biological samples. In conclusion, the conformational conversion strategy-driven solid-state nanopore platform represents a significant step forward in the rapid, low-cost, and concentration-sensitive detection of lung cancer biomarkers, addressing critical challenges in the field and offering new opportunities for early disease diagnosis and personalized medicine.

Cite this article

Shang Jianyu , Wang Chaochao , Gao Xinran , Zhang Yin , Sha Jingjie . Conformational Conversion Strategy-Driven Solid-State Nanopore Enables Concentration-Sensitive Quantification of Biomarkers[J]. Acta Chimica Sinica, 0 : 25040134 -25040134 . DOI: 10.6023/A25040134

References

[1] Bartel D. P.Cell. 2009, 136(2), 215-233.
[2] Qiu Y.; Liu X.; Sun Y.; et al.Phenomics. 2021, 1(1), 15-21.
[3] Esquela-Kerscher, A.; Slack, F. J. Nat. Rev. Cancer. 2006, 6(4), 259-269.
[4] Calin G. A.; Croce C. M.Nat. Rev. Cancer. 2006, 6(11), 857-866.
[5] Jones K.; Nourse J.; Bhatnagar A.; et al.Clin. Cancer Res. 2013, 20(1):253-64.
[6] Foss K. M.; Sima C.; Ugolini D.; et al.J. Thorac. Oncol. 2011, 6(3), 482-488.
[7] Shen J.; Todd N. W.; Zhang H.; et al.Lab. Invest. 2011, 91(4), 579-587.
[8] Wei J.; Gao W.; Zhu C. J.; et al.Chin. J. Cancer. 2011, 30(6), 407-414.
[9] Keller A.; Leidinger P.; Gislefoss R.; et al.RNA Biol. 2011, 8(3), 506-516.
[10] Sadeghi M. S.; Lotfi M.; Soltani N.; et al.Cancer Cell Int. 2023, 23(1), 284.
[11] Zhang H.; Chen X.Zhongguo Fei Ai Za Zhi. 2012, 15(1), 52-55.
[12] Fiebiger W.; Wiltschke C.Acta Medica Austriaca. 2001, 28(2): 33-37.
[13] Preethi K. A.; Selvakumar S. C.; Ross K.et al.Molecular Cancer. 2022, 21(1):54.
[14] Choi J.J. Clin. Oncol. 2020, 38(15), e22073.
[15] Yi J. M.; Guzzetta A. A.; Bailey V. J.; et al.Clin. Cancer Res. 2013, 19(23), 6544-6555.
[16] Mouliere F.; Robert B.; Peyrotte E. A.; et al.PLoS ONE. 2011, 6(9), e23418.
[17] Zhang L.; Su W.; Liu S.; et al.Phenomics. 2022, 2(1), 18-32.
[18] Kilic T.; Erdem A.; Ozsoz M.; Carrara S.Biosens. Bioelectron. 2018, 99, 525-546.
[19] Lu Y.; Wu X. Y.; Ying Y. L.; et al.Chem. Commun. 2019, 55(63), 9311-9314.
[20] Chen X. H.; Roozbahani G. M.; Ye Z. J.; et al. ACS Appl. Mater. Interfaces. 2018, 10(14), 11519-11528.
[21] Lu S. M.; Peng Y. Y.; Ying Y. L.; et al.Anal. Chem. 2020, 92(8), 5621-5644.
[22] Cai S. L.; Sze J. Y.Y.; Ivanov, A. P.; et al.Nat. Commun. 2019, 10(1), 9.
[23] Hwu S.; Blickenstorfer Y.; Tiefenauer R. F.; et al.ACS Sens. 2019, 4(7), 1950-1956.
[24] Chaofan Ma.; Wei Xu.; Wei Liu.; et al.Acta Chimica Sinica. 2023, 81(7): 857-868.
[25] Buchfink B.; Xie C.; Huson D. H.Nat. Methods. 2021, 18(4), 366-368.
[26] Bellenguez C.;Küçükali, F.; Jansen, I. E.; et al.Nat. Genet. 2022, 54(4), 412-436.
[27] Fried J. P.; Swett J. L.; Nadappuram B. P.; et al.Chem. Soc. Rev. 2021, 50(8), 4974-4992.
[28] Firnkes M.; Pedone D.; Knezevic J.; et al.Nano Lett. 2010, 10(6), 2162-2167.
[29] Zhan L.; Zhang Y.; Si W.; et al.J. Phys. Chem. Lett. 2021, 12(28), 6469-6477.
[30] Wanunu M.; Morrison W.; Rabin Y.; et al.Nat. Nanotechnol. 2010, 5(2), 160-165.
[31] He Y.; Tsutsui M.; Fan C.; et al.ACS Nano. 2011, 5(7):5509-18.
[32] Li J.; Gershow M.; Stein D.; et al.Nat. Mater. 2003, 2(9), 611-615.
[33] Ghosal S.Phys. Rev. Lett. 2007, 98(23), 238104.
[34] Smeets R. M.M.; Keyser, U. F.; Koeleman, B. N.; et al.Nano Lett. 2006, 6(1), 89-95.
[35] Ruseska I.; Zimmer A.Eur. J. Pharm. Biopharm. 2023, 191, 189-204.
[36] Keyser U. F.; Koeleman B. N.; van Dorp, S.; et al.Nat. Phys. 2006, 2(7), 473-477.
[37] Wanunu M.; Morrison W.; Rabin Y.; et al.Nat. Nanotechnol. 2010, 5(2), 160-165.
[38] Lu B.; Hoogerheide D. P.; Zhao Q.; et al.Nano Lett. 2013, 13(7), 3048-3052.
[39] Zhang H. B.; Zhao Q.; Tang Z. P.; et al.Small. 2013, 9(24), 4112-4117.
[40] Wang Z.; Hu R.; Zhu R.; et al.Small Methods. 2022, 6(11), 2200743.
[41] Schmid S.; Stömmer P.; Dietz H.; et al.Nat. Nanotechnol. 2021, 16(12), 1244-1250.
[42] Wen C.; Schmid S.; Dekker C.ACS Nano. 2024, 18(31), 20449-20458.
[43] Fu J.; Schoch R.; Stevens A.; et al.Nat. Nanotechnol. 2007, 2(3), 121-128.
[44] Cohen L.; Hartman MR.; Amardey-Wellington, A.; et al.Nucleic Acids Res. 2017, 45(14):137.
[45] Huang S.; He J.; Chang S.; et al.Nat. Nanotechnol. 2010, 5(12), 868-873.
[46] Wanunu M.Phys. Life Rev. 2012, 9(2), 125-158.
[47] ASHTON N. J.; LEUZY A.; KARIKARI T. K.; et al.EJNMMI. 2021, 48(7):2140-2156.
[48] He L.; Tessier D. R.; Briggs K.; et al.Nat. Commun. 2021, 12(1), 5348.
[49] Wang Y.; Ying C.; Zhou W.; et al.Sci. Rep. 2018, 8(1), 1234.
[50] Briggs K.; Charron M.; Kwok H.; et al.Nanotechnology. 2015, 26(8), 084004.
[51] Kwok H.; Briggs K.; Tabard-Cossa, V.PLoS ONE. 2014, 9(3), e92880.
[52] Smeets R. M.M.; Keyser, U. F.; Koeleman, B. N.; et al.Nano Lett. 2006, 6(1), 89-95.
[53] Stein D.; Kruithof M.; Dekker C.Phys. Rev. Lett. 2004, 93(3), 035901.
[54] van der Heyden, F. H. J.; Stein, D.; Dekker, C.Phys. Rev. Lett. 2005, 95(11), 116104.
[55] Zhang L.; Zhang Y.; Si W.; et al.J Phys Chem Lett. 2021, 12(28): 6469-6477.
[56] Wanunu M.; Morrison W.; Rabin Y.; et al.Nat. Nanotechnol. 2010, 5(2), 160-165.
[57] Irving Langmuir.J. Am. Chem. Soc. 1918, 40(9), 1361-1403.
[58] Hirao I.; Kawai G.; Yoshizawa S.; et al.Nucleic Acids Res. 1994, 22(4), 576-582.
[59] COMSOL Multiphysics® v. 6.2. www.comsol.com. COMSOL AB, Stockholm, Sweden.
[60] Rattu P.; Belzunces B.; Haynes T.; et al.Nanoscale. 2021, 13, 1673-1679.
[61] Sohi A. N.; Beamish E.; Tabard-Cossa, V.; et al.Anal. Chem. 2020, 92(12), 8108-8116.
[62] Hoogerheide D. P.; Lu B.; Golovchenko J. A.ACS Nano. 2014, 8(7), 7384-7391.
Outlines

/