Article

Fluorine Doping-Induced Intrinsic Defect Modulation in Rock-Salt-Type High-Entropy Oxide for Lithium Storage Performance Optimization

  • Wei Zhengbing ,
  • Xu Shibiao ,
  • Bao Mengfan ,
  • Chen Shijie ,
  • Lin Na ,
  • Mao Aiqin
Expand
  • aSchool of Materials Science and Engineering, Anhui University of Technology, Ma’anshan;
    bAdvanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Ma’anshan

Received date: 2025-04-03

  Online published: 2025-06-30

Supported by

Project supported by the University Natural Science Research Project of Anhui Province in P.R. China (No. 2023AH051104), and the Open Project of Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity (No. ECSSHE2024KF05).

Abstract

High-entropy oxides (HEOs) have emerged as one of the most promising anode materials for lithium-ion batteries due to their flexible compositional design and synergistic effects among multiple components. However, their practical application is severely hindered by inferior intrinsic electronic/ionic conductivity, which leads to poor rate capability and cycling stability in lithium storage systems. In this study, we developed a fluorine anion doping strategy to regulate intrinsic defects including lattice distortion and oxygen vacancies in rock-salt type (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O through solution combustion synthesis. This approach successfully fabricated single-phase F-doped (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O1-xFx (x = 0, 0.05, 0.1) HEO anode materials. Electrochemical evaluations demonstrate that the (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O0.95F0.05 anode exhibits exceptional rate performance and cycling stability, delivering a high specific capacity of 389.5 mAh·g-1 after 150 cycles at 200 mA g-1. Even under high current density of 1000 mA g-1, it maintains 233.4 mAh g-1 after 150 cycles with 93.1% capacity retention, representing a 56% improvement compared to undoped counterparts. The enhanced electrochemical performance originates from optimized material characteristics induced by appropriate F- doping: increased specific surface area, elevated surface Cu+ content, reduced lattice distortion, and controlled oxygen vacancies. These structural modifications not only provide additional active sites and ion transport pathways but also enhance surface pseudocapacitive behavior, thereby significantly improving both electronic and ionic transport kinetics.

Cite this article

Wei Zhengbing , Xu Shibiao , Bao Mengfan , Chen Shijie , Lin Na , Mao Aiqin . Fluorine Doping-Induced Intrinsic Defect Modulation in Rock-Salt-Type High-Entropy Oxide for Lithium Storage Performance Optimization[J]. Acta Chimica Sinica, 0 : 25040107 . DOI: 10.6023/A25040107

References

[1] Ajayi S. O.; Dolla T. H.; Bello I. T.; Liu X.; Makgwane P. R.; Mathe M. K.; Ehi-Eromosele, C. O. Inorg. Chem. Commun,2025, 172, 113721.
[2] Anandkumar M.; Trofimov, E. J. Alloys Compd,2023, 960, 170690.
[3] Cao J. R.; Wu S. B.; He, J. H; Zhou, Y.; Ma P. P. Particuology,2024, 95, 62.
[4] Jia, Y. G.; Chen, S. J.; Shao, X.; Cheng, J.; Lin, N.; Fang, D. L.; Mao, A. Q.; Li, C. H. Acta Chim. Sinica, 2023, 81, 486.(贾洋刚, 陈诗洁, 邵霞, 程捷, 林娜, 方道来, 冒爱琴, 李灿华, 化学学报, 2023, 81, 486.)
[5] Guo X.; Gu P.; Wu J. F.; Li K.; Liang Y. X.; Wang G. T.; Zhang Z.; Guo, C. F. J. Electroanal. Chem,2025, 978, 118910.
[6] Khatua R.; Patri S. K.; Badjena, S. K. Mater. Today Commun,2025, 42, 111343.
[7] Liu C.; Bi J. Q.; Xie L. L.; Gao X. C.; Meng, L. J. Mater. Today Commun,2023, 35, 106315.
[8] Shao, X.; Jia, Y. G.; Cheng, J.; Fang, D. L.; Mao, A. Q.; Tan, J. Chin. J. Process Eng. 2023, 23, 771 (in Chinese). (邵霞, 贾洋刚, 程婕, 方道来, 冒爱琴, 檀杰, 过程工程学报, 2023, 23, 771.)
[9] Liu X. F.; Wang H. H.; Dong L.; Li K. Z.; Zhang H. J.; Jia Q. L.; Zhang S. W.; Lei, W. J. Energy Chem,2023, 86, 536.
[10] Jia Y. G.; Chen S. J.; Shao X.; Chen J.; Fang D. L.; Li S. S.; Mao A. Q.; Li, C. H. J. Adv. Ceram,2023, 12(6), 1214.
[11] Chen S. J.; Bao M. F.; Jia Y. G.; Wang P. P.; Wei D.; Guo Y. H.; Tan J.; Mao, A. Q. J. Adv. Ceram,2024, 13(6), 769.
[12] Du M.; Geng P.; Pei C.; Jiang X.; Shan Y.; Hu W.; Ni L.; Pang, H. Angew Chem Int Ed Engl,2022, 61(41), e202209350.
[13] Liu X. F.; Xing Y. Y.; Xu K.; Zhang H. J.; Gong M. X.; Jia Q. L.; Zhang S. W.; Lei W. Small,2022, 18, 2200524.
[14] Zhao Y. J.; Zhang P. J.; Liang J. R.; Xia X. Y.; Ren L. T.; Song L.; Liu W.; Sun, X. M. Energy Storage Mater,2022, 47, 424.
[15] Wei A. J.; Mu J. P.; He R.; Bai X.; Li X. H.; Wang Y. J.; Liu Z. F.; Wang, S. N. Solid State Ionics,2021, 371, 115753.
[16] Zhang Z. Q.; Lu S. Y.; Huang G.; Wang W. J.; He D. C.; Liu Y.; Gao F.; Chen Y. H.; Zhan H. R.; Mei J.; Terrones M.; Wang Y. Q.; Chen X. C. Carbon,2024, 221, 118885.
[17] Chen Z. H.; Lu L.; Gao Y.; Zhang Q. X.; Zhang C. X.; Sun C. W.; Chen X. Y. Materials.2018, 11(11), 2206.
[18] Santos J. R. D.; Raimundo R. A.; Oliveira J. F. G. D. A.; Hortencio J. D. S.; Loureiro F. J. A.; Macedo D. A.; Morales M. A.; Gualandi I.; Tonelli D.; Gomes, U. U. J. Energy Chem,2024, 961, 118191.
[19] Cheng B.; Lou H.; Sarkar A.; Zeng Z.; Zhang F.; Chen X.; Tan L.; Glazyrin K.; Liermann H. P.; Yan J.; Wang L.; Djenadic R.; Hahn H.; Zeng, Q. Mater. Today Adv,2020, 8, 100102.
[20] Fu, C.; Wang, L. K.; Qiu, R. M.; Wang, G.; Cai, W. H.; Yang, J. K.; Zhao, H. L. CJMR, 2019, 33(04), 277.(in Chinese).(付晨;王立坤;邱茹蒙;王贵;蔡文豪;杨静凯;赵洪力,材料研究学报,2019,33(04),277-83)
[21] Berardan D.; Meena A. K.; Franger S.; Herrero C.; Dragoe, N. J. Alloys Compd,2017, 704, 693.
[22] Bao, M. F.; Chen, S. J.; S, X.; Deng, H. J.; Mao, A. Q.; Tan, J. Acta Chim. Sinica, 2024, 82(03), 303.(in Chinese).(鲍梦凡;陈诗洁;邵霞;邓慧娟;冒爱琴;檀杰,化学学报,2024,82(03),303)
[23] Zhu M.; Cao J. C.; Chen X. N.; Ma D. D.; Meng, Y. J. Ceram. Int,2024, 50(24, Part C), 55589.
[24] Bellardita M.; Di Paola A.; Megna B.; Palmisano, L. J Photoch Photobio A,2018, 367, 312.
[25] Xu C.; Gao Y. J.; Li T. S.; Guo J. N.; Wu, M. X. J. Power Sources,2025, 628, 235877.
[26] Huang N.; Zhang H. H.; Zhu G. J.; Tang C.; Cheng Z. L.; Du A. J.; Wang M. S.; Zhang, H. J. Chem. Eng. J.,2024, 502, 157959.
[27] Manchón-Gordón A. F.; Lobo-Llamas C.; Molina-Molina S.; Perejón A.; Sánchez-Jiménez P. E.; Pérez-Maqueda, L. A. Ceram. Int,2024, 50(21), 42276.
[28] Oliveira Filho R. M.; Alves R. F.; Raimundo R. A.; Da S. Hortêncio J.; Lopes C. M. S.; Nascimento E. P.; Araújo A. J. M.; Loureiro F. J. A.; Gomes U. U.; Mederios E. S.; Morales M. A.; Macedo D. A.; Menezes, R. R. Appl. Surf. Sci.,2025, 682, 161593.
[29] Lin J. L.; Wang X.; Chen F. Y.; Li H. F.; Li, L. W. J Mater Sci Technol,2025, 207, 317.
[30] Rahangdale K. K.; Ganguly, S. Phys. B Condens. Matter,2022, 626, 413570.
[31] Liu Y.; Wu X.; Feng H.; Lu G. Z.; Jiang Y.; Lou X. B.; Li C.; Shen M.; Geng F. S.; Hu, B. W. Energy Storage Mater,2024, 73, 103789.
[32] Wang M. L.; Da Y.; Xie, M Q.; Wang, Z. J. Power Sources,2025, 634, 236498.
[33] Chen, J.; Yin,Z. L.; Zhang, H. Z. Nonferrous Metals, 2019, 9(08), 1(in Chinese). (陈见, 尹周澜, 张衡中, 有色金属工程,2019, 9(08), 1 )
[34] Qiu N.; Chen H.; Yang Z. M.; Sun S.; Wang Y.; Cui, Y. H. J. Alloys Compd,2019, 777, 767.
[35] Jin C. Q.; Wang Y. L.; Lu P.; Dong H. B.; Wei Y. X.; Nan R. H.; Jian Z. Y.; Yang Z.; Ding, Q. P. Electrochimica. Acta,2024, 506, 145004.
[36] Song W.; Liu D. D.; Zhu B.; He Y.; Dou S.; Huang X.; Li M.; Zhong, B. J. Colloid Interface Sci.,2025, 677(Pt B), 795.
[37] Liu X. L.; Tao R. M.; Li C.; Wang J. X.; Yao S. H.; Hong C.; Li H. Y.; Geng J. Z.; Liang, J. Y. Chem. Eng. J.,2024, 484, 149791.
[38] Wang M. S.; Liang H. M.; Wang C. Y.; Wang A. P.; Song Y. Z.; Wang J. L.; Wang B.; Wei Y.; He X. M.; Yang Y. Adv. Mater.,2023, 35(51), e2306683.
[39] Liu Z. X.; Tian Y. P.; Li S. Q.; Wang L.; Han B. X.; Cui X. W.; Xu, Q. Adv. Funct. Mater,2023, 33(40), 2302994.
[40] Yu F. G.; Nong J. X.; Zou Z. G.; Feng M.; Zhang S. C.; Liang F. G.; Jia S. K.; Chen, M. J. Energy Storage,2024, 98, 113149.
[41] Li S. T.; Chen F.; Ma T. Y.; Huang, H. W. Chem. Eng. J.,2023, 467, 143421.
[42] Bai Y. H.; Li J. R.; Lu H.; Liu J.; Ma C. Y.; Wang B.; Zhao X.; Deng J. J. Adv.Ceram.,2023, 12(10), 1857.
[43] Zheng S. S.; Sun Y.; Xue H. G.; Braunstein P.; Huang W.; Pang, H. Natl Sci Rev,2022, 9(7), nwab197.
[44] Chen, S. J.; Bao, M. F.; Lin, N.; Yang, H. Q.; Mao, A. Q. CJMR, 2024, 38(7), 508(in Chinese).(陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴, 材料研究学报,2024, 38(7), 508.)
Outlines

/