Review

Ethane-selective Metal-Organic Frameworks for Structural Design and Separation Application

  • Wu Zilin ,
  • Zhang Lu ,
  • Chen Yang ,
  • Li Jinping ,
  • Li Libo
Expand
  • College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024

Received date: 2025-04-30

  Online published: 2025-06-30

Supported by

Project supported by National Key R&D Program of China (2022YFB3806800), National Natural Science Foundation of China (22422810, 22278287, 22090062)

Abstract

Ethylene (C2H4) serves as a core raw material in the modern chemical industry, where its efficient separation and purification are of paramount importance. Compared to traditional distillation technology, adsorption separation technology offers significant advantages, including reduced energy consumption, lower costs, and simpler operational procedures. Ethane (C2H6)-selective adsorbents can directly obtain high-purity C2H4 through a single-step adsorption, simplifying the separation process and reducing energy consumption. Developing efficient C2H4 separation and purification technologies is a major demand for energy conservation, consumption reduction and green development in the chemical industry. The key to this research lies in the design and preparation of high-performance C2H6-selective adsorbents. The advent of Metal-organic framework (MOF), characterized by their high designability and adjustability, has significantly advanced the research and development of C2H6-selective adsorbents. By strategically designing active sites and precisely controlling pore environments, a diverse range of C2H6-selective adsorbents have been continuously developed. However, when facing actual separation systems and complex industrial application scenarios, the performance of these materials still needs to be improved, and there is an urgent need for further systematic research on the structure-activity relationship of the C2H6 adsorption mechanism. This study provides a comprehensive review of the research progress in C2H6-selective adsorbents over the past 15 years, delving into their structural design methodologies, such as flexible gate-opening effects, metal site modifications, and surface potential regulation. It also elaborates in detail on the influence mechanisms of different methods on the adsorption selectivity and capacity. In addition, it emphasizes the key challenges that C2H6-adsorbents must overcome in the face of industrial applications, including cyclic stability, green large-scale synthesis, and the establishment of new separation processes. It is expected to lay a theoretical foundation for the precise construction and separation application of high-performance C2H6-adsorbents, and to promote the technological innovation and transformative development of the olefin separation industry.

Cite this article

Wu Zilin , Zhang Lu , Chen Yang , Li Jinping , Li Libo . Ethane-selective Metal-Organic Frameworks for Structural Design and Separation Application[J]. Acta Chimica Sinica, 0 : 25040140 . DOI: 10.6023/A25040140

References

[1] Sholl D. S.; Lively R. P. Nature2016, 532, 435.
[2] Patel K.; Chikkali S. H.; Sivaram, S. Prog. Polym. Sci.2020, 109, 101290.
[3] Ren T.; Patel M.; Blok K. Energy2006, 31, 425.
[4] Wu E.; Gu X.-W.; Liu D.; Zhang X.; Wu H.; Zhou W.; Qian G.; Li B. Nat. Commun.2023, 14, 6146.
[5] Chen J.-M.; Yu B.; Wei Y.-M.Appl. Energy 2018, 224, 160.
[6] Li L.; Lin R.-B.; Krishna R.; Li H.; Xiang S.; Wu H.; Li J.; Zhou W.; Chen B. Science2018, 362, 443.
[7] Cui X.-L.; Xing, H. Chin. J. Chem. Eng.2018, 69, 2339(in Chinese). (崔希利, 邢华斌, 化工学报, 2018, 69, 2339.)
[8] Li X.-F; Yan B.-Y; Huang W.-Q; Fu L,-P; Sun. X.-H; Lv, A.-H.Acta Chim. Sinica 2021, 79, 459(in Chinese). (李旭飞, 闫保有, 黄维秋, 浮历沛, 孙宪航, 吕爱华, 化学学报, 2021, 79, 459.)
[9] Chen Y.; Du Y.-D.; Wang Y.; Liu P.-X.; Li L.-B.; Li J.-P.Acta Chim. Sinica 2020, 78, 534(in Chinese). (陈杨, 杜亚丹, 王勇, 刘普旭, 李立博, 李晋平, 化学学报, 2020, 78, 534.)
[10] Lin X.; Yang Y.; Wang X.; Lin S.; Bao Z.; Zhang Z.; Xiang S.Sep. Purif. Technol. 2024, 330, 125252.
[11] Li B.; Zhang Y.; Krishna R.; Yao K.; Han Y.; Wu Z.; Ma D.; Shi Z.; Pham T.; Space B.; Liu J.; Thallapally P. K.; Liu J.; Chrzanowski M.; Ma, S. J. Am. Chem. Soc.2014, 136, 8654.
[12] Bloch E. D.; Queen W. L.; Krishna R.; Zadrozny J. M.; Brown C. M.; Long J. R. Science2012, 335, 1606.
[13] Ding Q.; Zhang Z.; Yu C.; Zhang P.; Wang J.; Cui X.; He C.-H.; Deng S.; Xing H. Sci. Adv.2020, 6, eaaz4322.
[14] Gu C.; Hosono N.; Zheng J.-J.; Sato Y.; Kusaka S.; Sakaki S.; Kitagawa S. Science2019, 363, 387.
[15] Yang S.-Q.; Hu, T.-L. Coord. Chem. Rev.2022, 468, 214628.
[16] Cadiau A.; Adil K.; Bhatt P. M.; Belmabkhout Y.; Eddaoudi M. Science2016, 353, 137.
[17] Choudhary V. R.; Mayadevi S. Zeolites1996, 17, 501.
[18] Maghsoudi, H. Adsorption2016, 22, 985.
[19] Liang W.; Zhang Y.; Wang X.; Wu Y.; Zhou X.; Xiao J.; Li Y.; Wang H.; Li, Z. Chem. Eng. Sci.2017, 162, 192.
[20] Choi B.-U.; Choi D.-K.; Lee Y.-W.; Lee B.-K.; Kim, S.-H. J. Chem. Eng. Data2003, 48, 603.
[21] Li L.; Guo L.; Olson D. H.; Xian S.; Zhang Z.; Yang Q.; Wu K.; Yang Y.; Bao Z.; Ren Q.; Li J. Science2022, 377, 335.
[22] Zhang B.; Chen X.-F.; Zhao. S -Y.; Zhou, X. Chin. J. Chem. Eng.2022, 73, 4255(in Chinese). (张博, 陈晓霏, 赵思尧, 周欣, 化工学报2022, 73, 4255.)
[23] Liao P.-Q.; Zhang W.-X.; Zhang J.-P.; Chen X.-M. Nat. Commun.2015, 6, 8697.
[24] Lin R.-B.; Wu H.; Li L.; Tang X.-L.; Li Z.; Gao J.; Cui H.; Zhou W.; Chen, B. J. Am. Chem. Soc.2018, 140, 12940.
[25] Gücüyener C.; Van Den Bergh J.; Gascon J.; Kapteijn, F. J. Am. Chem. Soc.2010, 132, 17704.
[26] Pires J.; Pinto M. L.; Saini, V. K. ACS Appl. Mater. Interfaces2014, 6, 12093.
[27] Liang W.; Xu F.; Zhou X.; Xiao J.; Xia Q.; Li Y.; Li, Z. Chem. Eng. Sci.2016, 148, 275.
[28] Yuan W.; Zhang X.; Li, L. J. Solid State Chem.2017, 251, 198.
[29] Chen Y.; Qiao Z.; Wu H.; Lv D.; Shi R.; Xia Q.; Zhou J.; Li, Z. Chem. Eng. Sci.2018, 175, 110.
[30] Chen Y.; Wu H.; Lv D.; Shi R.; Chen Y.; Xia Q.; Li, Z. Ind. Eng. Chem. Res.2018, 57, 4063.
[31] Zeng H.; Xie M.; Wang T.; Wei R.-J.; Xie X.-J.; Zhao Y.; Lu W.; Li D. Nature2021, 595, 542.
[32] Huang Y.; Wan J.; Pan T.; Ge K.; Guo Y.; Duan J.; Bai J.; Jin W.; Kitagawa, S. J. Am. Chem. Soc.2023, 145, 24425.
[33] Kitaura R.; Seki K.; Akiyama G.; Kitagawa S.Angew. Chem. Int. Ed. 2003, 42, 428.
[34] Klein R. A.; Bingel L. W.; Halder A.; Carter M.; Trump B. A.; Bloch E. D.; Zhou W.; Walton K. S.; Brown C. M.; McGuirk, C. M. J. Am. Chem. Soc.2023, 145, 21955.
[35] Wang S.-M.; Shivanna M.; Zheng S.-T.; Pham T.; Forrest K. A.; Yang Q.-Y.; Guan Q.; Space B.; Kitagawa S.; Zaworotko, M. J. J. Am. Chem. Soc.2024, 146, 4153.
[36] Zhang L.; Lei Q.; Yi M.; Zhang Z.; Lian X.; Xu J.; Zhang S.; Li L.; Li B.; Bu, X. Angew. Chem. Int. Ed.2025, 64, e202421753.
[37] Yang W.; Wang J.; Tan K.; Zhou H.; Zhang M.; Krishna R.; Duan J.; Huang, L. Angew. Chem. Int. Ed.2025, 64, e202425638.
[38] Zhang L.; Yu B.; Wang M.; Chen Y.; Wang Y.; Sun L.; Zhang Y.; Zhang Z.; Li J.; Li, L. Angew. Chem. Int. Ed.2025, 64, e202418853.
[39] Yang H.; Wang Y.; Krishna R.; Jia X.; Wang Y.; Hong A. N.; Dang C.; Castillo H. E.; Bu X.; Feng, P. J. Am. Chem. Soc.2020, 142, 2222.
[40] Chen C.-X.; Wei Z.-W.; Pham T.; Lan P. C.; Zhang L.; Forrest K. A.; Chen S.; Al-Enizi A. M.; Nafady A.; Su C.-Y.; Ma, S. Angew. Chem. Int. Ed.2021, 60, 9680.
[41] Wang R.; Gao Q.; Zhong Y.; Wang X.; Xu, D. Sep. Purif. Technol.2023, 304, 122332.
[42] Wang W.; Chen Y.; Feng P.; Bu X. Adv. Mater.2024, 36, 2403834.
[43] Hong Q.; Wang W.; Chen S.; Chen K.; Liu M.; Zhang H.-X.; Zhang J. Chem. Mater.2022, 34, 307.
[44] Li J.; Chen S.; Jiang L.; Wu D.; Li Y. Inorg. Chem.2019, 58, 5410.
[45] Wang G.-D.; Li Y.-Z.; Shi W.-J.; Hou L.; Wang Y.-Y.; Zhu, Z. Angew. Chem. Int. Ed.2022, 61, e202205427.
[46] Kang M.; Kang D. W.; Choe J. H.; Kim H.; Kim D. W.; Park H.; Hong, C. S. Chem. Mater.2021, 33, 6193.
[47] Geng S.; Lin E.; Li X.; Liu W.; Wang T.; Wang Z.; Sensharma D.; Darwish S.; Andaloussi Y. H.; Pham T.; Cheng P.; Zaworotko M. J.; Chen Y.; Zhang, Z. J. Am. Chem. Soc.2021, 143, 8654.
[48] Yang L.; Yan L.; Niu W.; Feng Y.; Fu Q.; Zhang S.; Zhang Y.; Li L.; Gu X.; Dai P.; Liu D.; Zheng Q.; Zhao, X. Angew. Chem. Int. Ed.2022, 61, e202204046.
[49] Qazvini O. T.; Babarao R.; Shi Z.-L.; Zhang Y.-B.; Telfer, S. G. J. Am. Chem. Soc.2019, 141, 5014.
[50] Kang M.; Yoon S.; Ga S.; Kang D. W.; Han S.; Choe J. H.; Kim H.; Kim D. W.; Chung Y. G.; Hong, C. S. Adv. Sci.2021, 8, 2004940.
[51] Wu H.; Chen Y.; Lv D.; Shi R.; Chen Y.; Li Z.; Xia, Q. Sep. Purif. Technol.2019, 212, 51.
[52] Kou J.; Cui D.; Jiang J.; Li W.; Shan G.; Wang H.; Wang X.; Su Z.; Sun C.Adv. Funct. Mater. 2025, 2501580.
[53] Wang G.-D.; Krishna R.; Li Y.-Z.; Shi W.-J.; Hou L.; Wang Y.-Y.; Zhu, Z. Angew. Chem. Int. Ed.2022, 61, e202213015.
[54] Gu X.-W.; Wang J.-X.; Wu E.; Wu H.; Zhou W.; Qian G.; Chen B.; Li, B. J. Am. Chem. Soc.2022, 144, 2614.
[55] Song C.; Zheng F.; Liu Y.; Yang Q.; Zhang Z.; Ren Q.; Bao, Z. Angew. Chem. Int. Ed.2023, 62, e202313855.
[56] Liu J.; Miao J.; Wang H.; Gai Y.; Li J. AIChE J.2023, 69, e18021.
[57] Zhang X.; Li L.; Wang J.-X.; Wen H.-M.; Krishna R.; Wu H.; Zhou W.; Chen Z.-N.; Li B.; Qian G.; Chen, B. J. Am. Chem. Soc.2020, 142, 633.
[58] Jin F.; Lin E.; Wang T.; Geng S.; Wang T.; Liu W.; Xiong F.; Wang Z.; Chen Y.; Cheng P.; Zhang, Z. J. Am. Chem. Soc.2022, 144, 5643.
[59] Zhou Y.; Chen C.; Krishna R.; Ji Z.; Yuan D.; Wu, M. Angew. Chem. Int. Ed.2023, 62, e202305041.
[60] Ye Y.; Xie Y.; Shi Y.; Gong L.; Phipps J.; Al-Enizi A. M.; Nafady A.; Chen B.; Ma, S. Angew. Chem. Int. Ed.2023, 62, e202302564.
[61] Ding Q.; Zhang Z.; Liu Y.; Chai K.; Krishna R.; Zhang, S. Angew. Chem. Int. Ed.2022, 61, e202208134.
[62] Zeng H.; Xie X.-J.; Xie M.; Huang Y.-L.; Luo D.; Wang T.; Zhao Y.; Lu W.; Li, D. J. Am. Chem. Soc.2019, 141, 20390.
[63] Cao J.-W.; Mukherjee S.; Pham T.; Wang Y.; Wang T.; Zhang T.; Jiang X.; Tang H.-J.; Forrest K. A.; Space B.; Zaworotko M. J.; Chen K.-J. Nat. Commun.2021, 12, 6507.
[64] Zhang P.; Yang L.; Liu X.; Wang J.; Suo X.; Chen L.; Cui X.; Xing H. Nat. Commun.2022, 13, 4928.
[65] Zhang L.; Guan G.; Li Y.; Liu H.; Zheng S.; Jiang Y.; Bai R.; Yang Q. Small2024, 20, 2402382.
[66] Zhao S.; Yao J.; Fan Q.; Yuan Y.; Tu S.; Wu Y.; Xia, Q. Sep. Purif. Technol.2024, 330, 125256.
[67] Wang Z.-Q.; Luo H.-Q.; Wang Y.-L.; Xu M.-Y.; He C.-T.; Liu Q.-Y. Inorg. Chem.2021, 60, 10596.
[68] Zhang M.; Jiang J.; Zhao H.; Wang Y.; He X.; Chen M.; Wang W.; Wang S.; Wang S.; Wang M.; Sun T.; Qin G.; Tang Y.; Cui H. Inorg. Chem.2024, 63, 1507.
[69] Wang X.; Niu Z.; Al-Enizi A. M.; Nafady A.; Wu Y.; Aguila B.; Verma G.; Wojtas L.; Chen Y.-S.; Li Z.; Ma, S. J. Mater. Chem. A2019, 7, 13585.
[70] Xie F.; Liu J.; Graham W.; Ullah S.; Moisés Cedeño Morales, E.; Tan, K.; Thonhauser, T.; Wang, H.; Li, J.Chem. Eng. J. 2023, 473, 145096.
[71] Yang L.; Wang Y.; Chen Y.; Yang J.; Wang X.; Li L.; Li J.Chem. Eng. J. 2020, 387, 124137.
[72] Lysova A. A.; Samsonenko D. G.; Kovalenko K. A.; Nizovtsev A. S.; Dybtsev D. N.; Fedin, V. P. Angew. Chem. Int. Ed.2020, 59, 20561.
[73] Zhu B.; Cao J.-W.; Mukherjee S.; Pham T.; Zhang T.; Wang T.; Jiang X.; Forrest K. A.; Zaworotko M. J.; Chen, K.-J. J. Am. Chem. Soc.2021, 143, 1485.
[74] Wang Y.; Hao C.; Fan W.; Fu M.; Wang X.; Wang Z.; Zhu L.; Li Y.; Lu X.; Dai F.; Kang Z.; Wang R.; Guo W.; Hu S.; Sun, D. Angew. Chem. Int. Ed.2021, 60, 11350.
[75] Li Y.-P.; Zhao Y.-N.; Li S.-N.; Yuan D.-Q.; Jiang Y.-C.; Bu X.; Hu M.-C.; Zhai Q.-G. Adv. Sci.2021, 8, 2003141.
[76] Wang G.-D.; Chen J.; Li Y.-Z.; Hou L.; Wang Y.-Y.; Zhu, Z. Chem. Eng. J.2022, 433, 133786.
[77] Jiang S.; Guo L.; Chen L.; Song C.; Liu B.; Yang Q.; Zhang Z.; Yang Y.; Ren Q.; Bao Z.Chem. Eng. J. 2022, 442, 136152.
[78] Zhang P.; Zhong Y.; Zhang Y.; Zhu Z.; Liu Y.; Su Y.; Chen J.; Chen S.; Zeng Z.; Xing H.; Deng S.; Wang J. Adv. Sci.2022, 8, eabn9231.
[79] Ding Q.; Zhang Z.; Zhang P.; Yu C.; He C.-H.; Cui X.; Xing, H. Chem. Eng. J.2022, 450, 138272.
[80] Di Z.; Liu C.; Pang J.; Zou S.; Ji Z.; Hu F.; Chen C.; Yuan D.; Hong M.; Wu, M. Angew. Chem. Int. Ed.2022, 61, e202210343.
[81] Wang Y.; Fu M.; Zhou S.; Liu H.; Wang X.; Fan W.; Liu Z.; Wang Z.; Li D.; Hao H.; Lu X.; Hu S.; Sun D. Chem2022, 8, 3263.
[82] Liu W.; Geng S.; Li N.; Wang S.; Jia S.; Jin F.; Wang T.; Forrest K. A.; Pham T.; Cheng P.; Chen Y.; Ma J.-G.; Zhang, Z. Angew. Chem. Int. Ed.2023, 62, e202217662.
[83] Sun H.; Chen F.; Chen R.; Li J.; Guo L.; Liu Y.; Shen F.; Yang Q.; Zhang Z.; Ren Q.; Bao Z. Small2023, 19, 2208182.
[84] Li Y.-Z.; Wang G.-D.; Krishna R.; Yin Q.; Zhao D.; Qi J.; Sui Y.; Hou, L. Chem. Eng. J.2023, 466, 143056.
[85] Liu J.; Wang H.; Li J. Chem. Sci.2023, 14, 5912.
[86] Yu M.-H.; Fang H.; Huang H.-L.; Zhao M.; Su Z.-Y.; Nie H.-X.; Chang Z.; Hu T.-L. Small2023, 19, 2300821.
[87] Liu J.; Zhou K.; Ullah S.; Miao J.; Wang H.; Thonhauser T.; Li J. Small2023, 19, 2304460.
[88] Xie X.-J.; Wang Y.; Cao Q.-Y.; Krishna R.; Zeng H.; Lu W.; Li D. Chem. Sci.2023, 14, 11890.
[89] Wu T.; Yu C.; Krishna R.; Qiu Z.; Pan H.; Zhang P.; Suo X.; Yang L.; Cui X.; Xing H. AIChE J.2024, 70, e18312.
[90] Park W.; Kim T.-H.; Hyun Oh K.; Hee Han H.; Choi Y.; Kim K.; Bae, Y.-S. Chem. Eng. J.2024, 481, 148707.
[91] Zhang W.; Zou S.; Zhou Y.; Ji Z.; Li H.; Zhen G.; Chen C.; Song D.; Wu M. Inorg. Chem.2024, 63, 3145.
[92] Yang R.; Wang Y.; Cao J.-W.; Ye Z.-M.; Pham T.; Forrest K. A.; Krishna R.; Chen H.; Li L.; Ling B.-K.; Zhang T.; Gao T.; Jiang X.; Xu X.-O.; Ye Q.-H.; Chen K.-J. Nat. Commun.2024, 15, 804.
[93] Wang G.-D.; Li Y.-Z.; Krishna R.; Zhang W.-Y.; Hou L.; Wang Y.-Y.; Zhu, Z. Angew. Chem. Int. Ed.2024, 63, e202319978.
[94] Wang G.-D.; Li Y.-Z.; Krishna R.; Yan Z.-Z.; Hou L.; Wang Y.-Y.; Zhu, Z. Chem. Eng. J.2024, 485, 149587.
[95] Wang L.; Wu S.; Hu J.; Jiang Y.; Li J.; Hu Y.; Han Y.; Ben T.; Chen B.; Zhang Y. Chem. Sci.2024, 15, 5653.
[96] Zhang K.; Pang J.-J.; Lian X.; Song Z.-H.; Yuan Y.-C.; Huang H.; Yao Z.-Q.; Xu, J. New J. Chem.2024, 48, 10577.
[97] Li Y.; Wu Y.; Zhao J.; Duan J.; Jin W. Chem. Sci.2024, 15, 9318.
[98] Fu X.-P.; Liu Q.-Y.; Wang Y.-L. Inorg. Chem.2024, 63, 12309.
[99] Ainiwaner S.; Huang H.; Zheng J.-J.; Li F.; Yang X.-T.; Guo Y.-Y.; Yuan F.; Yao M.-S.; Gu Y. Nano Res.2024, 17, 10083.
[100] Ma L.-L.; Liu J.; Zhou K.; Cao Z.; Miao J.; Yang G.-P.; Wang Y.-Y.; Li J.; Wang, H. Sci. China Chem.2024, 67, 3657.
[101] Tang Y.; Wang S.; Zhou X.; Wu Y.; Xian S.; Li, Z. Chem. Eng. J.2020, 213, 115355.
[102] Kim D.; Truong B. N.; Jo D.; Yoon J. W.; Lee S.-K.; Bae Y.-S.; Ho Cho K.; Lee, U.-H. Chem. Eng. J.2023, 470, 143858.
[103] Wang G.-D.; Li Y.-Z.; Shi W.-J.; Hou L.; Wang Y.-Y.; Zhu, Z. Angew. Chem. Int. Ed.2023, 62, e202311654.
[104] Wen H.-M.; Yu C.; Liu M.; Lin C.; Zhao B.; Wu H.; Zhou W.; Chen B.; Hu, J. Angew. Chem. Int. Ed.2023, 62, e202309108.
[105] Feng X.; Wang X.; Yan H.; Liu H.; Liu X.; Guan J.; Lu Y.; Fan W.; Yue Q.; Sun, D. Angew. Chem. Int. Ed.2024, 63, e202407240.
[106] Wang J.-B.; Zhang T.; Cao J.-W.; Yang R.; Wang S.; Zhang X.; Chen K.-J. Inorg. Chem.2024, 63, 17298.
[107] Tran N.; Wang W.; Chen Y.; Feng P.; Bu X. Small2025, 21, 2410680.
[108] Park J.; Oh K. H.; Kang S.; Ha J.; Lee S.; Kim J.; Bae Y.-S.; Moon H. R. Small2025, 21, 2500937.
[109] Zheng M.; Fang Z.; Xue W.; Yan T.; Huang H.; Zhong C.A Adv. Funct. Mater. 2025, 2422135.
[110] Xu M.; Li Y.; Wang X.; Liu H.; Liu Q.; Zhang Y.; Fan W.; Meng Q.; Sun D. Inorg. Chem.2025, 64, 813.
[111] Tang J.; Wang Q.; Zhang H.; Huang Y.; Duan J.; Jin W. Small2025, 21, 2412508.
[112] Wang G.-D.; Li Y.-Z.; Zeng H.; Hou L.; Lu W.; Li D.Adv. Funct. Mater. 2025, 2504916.
[113] Yi M.; Wang S.; Li S.; Zhang S.; Liu Y.; Zhang L.; You Z.; Liu X.; Li L.; Wang J.; Wang H.; Zhao Q.; Li B.; Bu, X.-H. J. Am. Chem. Soc.2025, 147, 13592.
[114] Chen F.; Prasetyo N.; Sakaki S.; Otake K.; Kitagawa S.Angew. Chem. Int. Ed. 2025, e202423371.
[115] Shi Z.; Li J.; Li W.; Liu X.; Liu, Y. Chem. Eng. J.2025, 516, 163952.
[116] Li Y.; Yu J. Chem. Rev.2014, 114, 7268.
[117] Yang J.; Liu J.; Liu P.; Li L.; Tang X.; Shang H.; Li J.; Chen, B. Angew. Chem. Int. Ed.2022, 61, e202116850.
[118] Li Y.; Wang Y.; Bai H.; Li S.; Li X.; Wang X.; Li L.; Li J.; Yang, J. Sep. Purif. Technol.2024, 336, 126154.
[119] Lee S.-K.; Park H.; Yoon J. W.; Kim K.; Cho S. J.; Maurin G.; Ryoo R.; Chang, J.-S. ACS Appl. Mater.2020, 12, 28484.
[120] Baldwin L. A.; Crowe J. W.; Pyles D. A.; McGrier, P. L. J. Am. Chem. Soc.2016, 138, 15134.
[121] Xie Y.; Wang W.; Zhang Z.; Li J.; Gui B.; Sun J.; Yuan D.; Wang C. Nat. Commun.2024, 15, 3008.
[122] Chang Y.; Huang H.; Zhu H.; Zhao Y.; Wang L.; Sun Y.; Zhong, C. Chem. Eng. J.2022, 427, 131726.
[123] Yun H.; Kang M.; Kang D. W.; Kim H.; Choe J. H.; Kim S. Y.; Hong C. S. Small2023, 19, 2303640.
[124] Hisaki I.; Xin C.; Takahashi K.; Nakamura, T. Angew. Chem. Int. Ed.2019, 58, 11160.
[125] Li P.; Ryder M. R.; Stoddart, J. F. Acc. Mater. Res.2020, 1, 77.
[126] Wang J.-X.; Gu X.-W.; Lin Y.-X.; Li B.; Qian, G. ACS Mater. Lett.2021, 3, 497.
[127] Zhang X.; Li Y.; Li J.-R. Trends Chem.2024, 6, 22.
[128] Chen K.-J.; Madden D. G.; Mukherjee S.; Pham T.; Forrest K. A.; Kumar A.; Space B.; Kong J.; Zhang Q.-Y.; Zaworotko M. J. Science2019, 366, 241.
[129] Chen Y.; Wu Z.; Fan L.; Krishna R.; Huang H.; Wang Y.; Xiong Q.; Li J.; Li L. Engineering2024, 41, 84.
Outlines

/