Article

The modulation effect of N-substituents on photochromic properties of naphthalenediimide-based coordination polymers

  • Zhang Shimin ,
  • Hao Pengfei ,
  • Yu Weiyu ,
  • Zhu Huihui ,
  • Yang Haiying ,
  • Shen Junju ,
  • Fu Yunlong
Expand
  • aDepartment of Applied Chemistry, Yuncheng University, Yuncheng 044000, China;
    bSchool of Chemical and Material Science, Shanxi Normal University, Taiyuan 030031, China

Received date: 2025-05-14

  Online published: 2025-06-30

Supported by

Project supported by the National Natural Science Foundation of China (21171110), Natural Science Foundation of Science and Technology Agency of Shanxi Province (20210302123324, 201901D111275), and 1331 Project of Shanxi Province.

Abstract

In recent years, although the photochromic properties of photochromic coordination polymers (PCCPs) has been greatly improved, the regulation of photochromic performance still face tremendous challenges. Here, two photoresponsive 1,4,5,8-naphthalenediimide (NDI)-based coordination polymers (CPs), [Cd(3-DPNDI)(1,4-HNDA)(FA)]∙DMF (1) and [Cd(3-PANDI)2(1,4-HNDA)2]∙2DMF∙2H2O (2) (FA = formate, DMF = dimethyl formamide), have been designed (based on modulation effect of N-substituents) and obtained by assembly of N, -bis-(3-pyridyl)-1,4,5,8-naphthalenediimide (3-DPNDI)/N, -bis-(3-pyridinamide)-1,4,5,8-naphthalenediimide (3-PANDI), 1,4-naphthalene dicarboxylic acid (1,4-H2NDA) and cadmium nitrate tetrahydrate (Cd(NO3)2∙4H2O), respectively. The structures and photochromic properties of 1 and 2 have been detailedly investigated by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), thermogravimetry (TGA), Fourier transform infrared (FT-IR) spectra, UV-Vis absorption spectroscopy (UV-vis), kinetics curves and electron paramagnetic resonance (EPR). Interestingly, although 1 and 2 have the same two-dimension (2D) framework, they exhibit completely different photochromic behaviors. Upon exposure to ~365 nm Hg lamp, 1 displays a prominent color change from yellow to brown within 5 s, while 2 shows a color transformation from orange to brown within 15 s, both of which saturation time is 30 minutes. This phenomenon indicates that 1 has more excellent photochromic properties compared with 2. To investigate the reason, the interface relationship was analyzed carefully. Although 2 has a shorter electron transfer pathway (lone pair-π interactions: 3.471 Å and 3.650 Å in 1 vs. 3.113 Å and 3.375 Å in 2; π-π interactions: 3.678 Å, 3.741 Å and 3.758 Å in 1 vs. 3.550 Å and 3.725 Å in 2), the photochromic performance of 1 is superior to that of 2, which is mainly ascribed to the stronger charge transfer (CT) in 2 leading to the decrease of electron-accepting ability of electron acceptors and thereby inhibits the electron transfer (ET) process. This study demonstrates the subtle modulating effect of N-substituents on the interfacial relationship between electron donors and electon acceptors, intermolecular CT, photoinduced intermolecular ET and photochromic properties, which provides a new idea for the development of coordination polymers with controllable photochromic properties. Meanwhile, this work provides an effective strategy for the regulation of photochromic properties.

Cite this article

Zhang Shimin , Hao Pengfei , Yu Weiyu , Zhu Huihui , Yang Haiying , Shen Junju , Fu Yunlong . The modulation effect of N-substituents on photochromic properties of naphthalenediimide-based coordination polymers[J]. Acta Chimica Sinica, 0 : 25050166 . DOI: 10.6023/A25050166

References

[1] Laurent H. B.; Durr, H. Pure Appl. Chem.2001, 73, 639-665.
[2] Han S. D.; Hu J. X.; Wang, G. M. Coord. Chem. Rev.2022, 452, 214304.
[3] Ma J. Q.; Yang J. P.; Lu H. G.; Hou H. L.; Scalia R.; Lin, J. Sci. China: Chem.2025, 10.1007/s11426-024-2528-y.
[4] Tan Y.; Fu Z. Y.; Zeng Y.; Chen H. J.; Liao S. J.; Zhang J.; Dai, J. C. J. Mater. Chem.2012, 22, 17452-17455.
[5] Zhao J. L.; Li M. H.; Cheng Y. M.; Zhao X. W.; Xu Y.; Cao Z. Y.; You M. H.; Lin, M. J. Coord. Chem. Rev.2023, 475, 214918.
[6] Gong T.; Yang X.; Fang J. J.; Sui Q.; Xi F. G.; Gao, E. Q. ACS Appl. Mater. Interfaces2017, 9, 5503-5512.
[7] Li Y. D.; Ma L. F.; Yang G. P.; Wang, Y. Y. Angew. Chem. Int. Ed.2025, 64, e202421744.
[8] Shao Z. C.; Wu Q.; Han X.; Zhao Y. J.; Xie Q.; Wang H. F.; Hou, H. W. Chem. Commun.2019, 55, 10948-10951.
[9] Ke H.; Hu F.; Meng L. Y.; Chen Q. H.; Lai Q. S.; Li Z. C.; Huang Z. L.; Liao J. Z.; Qiu J. D.; Lu, C. Z. Chem. Commun.2020, 56, 14353-14356.
[10] Chen S. M.; Ju Y.; Zhang H.; Zou Y. B.; Lin S.; Li Y. B.; Wang S. Q.; Ma E.; Deng W. H.; Xiang S. C.; Chen B. L.; Zhang, Z. J. Angew. Chem. Int. Ed.2023, 62, e202308418.
[11] Li D. H.; Zhang X. Y.; Lv J. Q.; Cai P. W.; Sun Y. Q.; Sun C.; Zheng, S. T. Angew. Chem. Int. Ed.2023, 62, e202312706.
[12] Li L.; Yu Y. T.; Zhang N. N.; Li S. H.; Zeng J. G.; Hua Y.; Zhang, H. Coord. Chem. Rev.2024, 500, 215526.
[13] Shi Y. S.; Yang D. D.; Zheng H. W.; Liang Q. F.; Fang Y. H.; Xiao T.; Zheng X. J.Inorg. Chem. 2022, 61, 15973-15982.
[14] Pan Q. Y.; Sun M. E.; Zhang C.; Li L. K.; Liu H. L.; Li K. J.; Li H. Y.; Zang, S. Q. Chem. Commun.2021, 57, 11394-11397.
[15] Xu G.; Guo G. C.; Wang M. S.; Zhang Z. J.; Chen W. T.; Huang, J. S. Angew. Chem. Int. Ed.2007, 46, 3249-3251.
[16] Guha S.; Saha, S. J. Am. Chem. Soc.2010, 132, 17674-17677.
[17] Matsunaga Y.; Goto K.; Kubono, K. Sako K.; Shinmyozu, T. Chem. Eur. J.2014, 20, 7309-7316.
[18] Hao P. F.; Xu Y.; Shen J. J.; Fu, Y. L. Dyes Pigm.2021, 186, 108941.
[19] Li G. P.; Xie H. F.; Hao P. F.; Fu Y. L.; Zhang K.; Shen J. J.; Wang, Y. Y. Inorg. Chem.2022, 61, 6403-6410.
[20] Zhang S. M.; Liu X. X.; Hao P. F.; Li G. P.; Shen J. J.; Fu Y. L. Inorg. Chem. 2023, 62, 14912-14921.
[21] Yu T. L.; Hao P. F.; Shen J. J.; Li, H. H. Fu, Y. L. Dalton Trans.2016, 45, 16505-16510.
[22] Sun C.; Wang M. S.; Li P. X.; Guo, G. C. Angew. Chem. Int. Ed.2017, 56, 554-558.
[23] Shen J. J.; Kang X. L.; Hao, P. F. Fu, Y. L. Inorg. Chem. Front.2020, 7, 4865-4871.
[24] Hao P. F.; Wang W. P.; Zhang, L. F. Shen, J. J.; Fu, Y. L. Inorg. Chem. Front.2019, 6, 287-292.
[25] Zhang X. L.; Shen J. J.; Wang F.; Hao P. F.; Fu, Y. L. Dyes Pigm.2019, 162, 815-820.
[26] Hao P. F.; Gao B. H.; Li G. P.; Shen J. J.; Fu, Y. L. Inorg. Chem. Front.2022, 9, 2852-2861.
[27] Yang X. D.; Chen C.; Zhang, Y. J. Zhang, Y. J.; Cai L. X.; Tan B.; Zhang J. Dalton Trans.2016, 45, 4522-4527.
[28] Xu H. L.; Zeng X. S.; Li J.; Xu, Y. C; Qiu, H. J.; Xiao D. R. CrystEngComm,2018, 20, 2430-2439.
[29] Fu C.; Wang H. Y.; Zhang, G. S. Li, L.; Sun Y. N.; Fu J. W.; Zhang H. CrystEngComm,2018, 20, 4849-4856.
[30] Zhu H. H.; Hao P. F.; Shen Q.; Shen J. J.; Li G. P.; Zhao G. Z.; Xing H. Y.; Fu Y. L. CrystEngComm,2021, 23, 3356-3363.
[31] Chhapoliya M.; Singh, D. Materials Today Chem.2025, 44, 102563.
[32] Hu H.; Zhang Y. Y.; Ma H.; Yang Y. C.; Mei S.; Li J.; Xu J. F.; Zhang, X. Angew. Chem. Int. Ed.2023, 41, e202308513.
[33] Zhang S. M.; Hao P. F.; Li, G. P. Shen, J. J.; Fu, Y. L. Dyes Pigm.2023, 220, 111677.
[34] Zhang S. M.; Hao P. F.; Zhang Y. F.; Li, G. P. Shen, J. J.; Yang H. Y.; Fu, Y. L. Inorg. Chem. Front.2025, 12, 3919-3926.
[35] Zhang S. M.; Hao P. F.; Zhang Y. F.; Li, G. P. Shen, J. J.; Fu, Y. L. Inorg. Chem. Front.2024, 11, 1226-1237.
[36] Park S. H.; Lee J. Y.; Jeong H. Y.; Bae S. G.; Kang J. G.; Moon D. H.; Park J. H. Chem,2022, 8, 1-18.
[37] Zheng S. T.; Wu T.; Zuo F.J. Am. Chem. Soc. 2021, 134, 1934.
[38] Liu J. J.; Xia S. B.; Liu D.; Hou J. Y.; Suo H. B.; Cheng, F. X. Dyes Pigm.2020, 177, 108269.
[39] Pan J.Q.; Wei, H. R.; Chen, Y. R.; Jia, M. Z.; Tan, B.; Zhang, J. Angew. Chem. Int. Ed. 2024, e202412790.
[40] Yu W. Y.Master Dissertation, Shanxi Normal University, Taiyuan, 2022 (in Chinese).
(于炜玉, 硕士论文, 山西师范大学, 太原, 2022.)
Outlines

/