In recent years, although the photochromic properties of photochromic coordination polymers (PCCPs) has been greatly improved, the regulation of photochromic performance still face tremendous challenges. Here, two photoresponsive 1,4,5,8-naphthalenediimide (NDI)-based coordination polymers (CPs), [Cd(3-DPNDI)(1,4-HNDA)(FA)]∙DMF (1) and [Cd(3-PANDI)2(1,4-HNDA)2]∙2DMF∙2H2O (2) (FA = formate, DMF = dimethyl formamide), have been designed (based on modulation effect of N-substituents) and obtained by assembly of N, N´-bis-(3-pyridyl)-1,4,5,8-naphthalenediimide (3-DPNDI)/N, N´-bis-(3-pyridinamide)-1,4,5,8-naphthalenediimide (3-PANDI), 1,4-naphthalene dicarboxylic acid (1,4-H2NDA) and cadmium nitrate tetrahydrate (Cd(NO3)2∙4H2O), respectively. The structures and photochromic properties of 1 and 2 have been detailedly investigated by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), thermogravimetry (TGA), Fourier transform infrared (FT-IR) spectra, UV-Vis absorption spectroscopy (UV-vis), kinetics curves and electron paramagnetic resonance (EPR). Interestingly, although 1 and 2 have the same two-dimension (2D) framework, they exhibit completely different photochromic behaviors. Upon exposure to ~365 nm Hg lamp, 1 displays a prominent color change from yellow to brown within 5 s, while 2 shows a color transformation from orange to brown within 15 s, both of which saturation time is 30 minutes. This phenomenon indicates that 1 has more excellent photochromic properties compared with 2. To investigate the reason, the interface relationship was analyzed carefully. Although 2 has a shorter electron transfer pathway (lone pair-π interactions: 3.471 Å and 3.650 Å in 1 vs. 3.113 Å and 3.375 Å in 2; π-π interactions: 3.678 Å, 3.741 Å and 3.758 Å in 1 vs. 3.550 Å and 3.725 Å in 2), the photochromic performance of 1 is superior to that of 2, which is mainly ascribed to the stronger charge transfer (CT) in 2 leading to the decrease of electron-accepting ability of electron acceptors and thereby inhibits the electron transfer (ET) process. This study demonstrates the subtle modulating effect of N-substituents on the interfacial relationship between electron donors and electon acceptors, intermolecular CT, photoinduced intermolecular ET and photochromic properties, which provides a new idea for the development of coordination polymers with controllable photochromic properties. Meanwhile, this work provides an effective strategy for the regulation of photochromic properties.
[1] Laurent H. B.; Durr, H. Pure Appl. Chem.2001, 73, 639-665.
[2] Han S. D.; Hu J. X.; Wang, G. M. Coord. Chem. Rev.2022, 452, 214304.
[3] Ma J. Q.; Yang J. P.; Lu H. G.; Hou H. L.; Scalia R.; Lin, J. Sci. China: Chem.2025, 10.1007/s11426-024-2528-y.
[4] Tan Y.; Fu Z. Y.; Zeng Y.; Chen H. J.; Liao S. J.; Zhang J.; Dai, J. C. J. Mater. Chem.2012, 22, 17452-17455.
[5] Zhao J. L.; Li M. H.; Cheng Y. M.; Zhao X. W.; Xu Y.; Cao Z. Y.; You M. H.; Lin, M. J. Coord. Chem. Rev.2023, 475, 214918.
[6] Gong T.; Yang X.; Fang J. J.; Sui Q.; Xi F. G.; Gao, E. Q. ACS Appl. Mater. Interfaces2017, 9, 5503-5512.
[7] Li Y. D.; Ma L. F.; Yang G. P.; Wang, Y. Y. Angew. Chem. Int. Ed.2025, 64, e202421744.
[8] Shao Z. C.; Wu Q.; Han X.; Zhao Y. J.; Xie Q.; Wang H. F.; Hou, H. W. Chem. Commun.2019, 55, 10948-10951.
[9] Ke H.; Hu F.; Meng L. Y.; Chen Q. H.; Lai Q. S.; Li Z. C.; Huang Z. L.; Liao J. Z.; Qiu J. D.; Lu, C. Z. Chem. Commun.2020, 56, 14353-14356.
[10] Chen S. M.; Ju Y.; Zhang H.; Zou Y. B.; Lin S.; Li Y. B.; Wang S. Q.; Ma E.; Deng W. H.; Xiang S. C.; Chen B. L.; Zhang, Z. J. Angew. Chem. Int. Ed.2023, 62, e202308418.
[11] Li D. H.; Zhang X. Y.; Lv J. Q.; Cai P. W.; Sun Y. Q.; Sun C.; Zheng, S. T. Angew. Chem. Int. Ed.2023, 62, e202312706.
[12] Li L.; Yu Y. T.; Zhang N. N.; Li S. H.; Zeng J. G.; Hua Y.; Zhang, H. Coord. Chem. Rev.2024, 500, 215526.
[13] Shi Y. S.; Yang D. D.; Zheng H. W.; Liang Q. F.; Fang Y. H.; Xiao T.; Zheng X. J.Inorg. Chem. 2022, 61, 15973-15982.
[14] Pan Q. Y.; Sun M. E.; Zhang C.; Li L. K.; Liu H. L.; Li K. J.; Li H. Y.; Zang, S. Q. Chem. Commun.2021, 57, 11394-11397.
[15] Xu G.; Guo G. C.; Wang M. S.; Zhang Z. J.; Chen W. T.; Huang, J. S. Angew. Chem. Int. Ed.2007, 46, 3249-3251.
[16] Guha S.; Saha, S. J. Am. Chem. Soc.2010, 132, 17674-17677.
[17] Matsunaga Y.; Goto K.; Kubono, K. Sako K.; Shinmyozu, T. Chem. Eur. J.2014, 20, 7309-7316.
[18] Hao P. F.; Xu Y.; Shen J. J.; Fu, Y. L. Dyes Pigm.2021, 186, 108941.
[19] Li G. P.; Xie H. F.; Hao P. F.; Fu Y. L.; Zhang K.; Shen J. J.; Wang, Y. Y. Inorg. Chem.2022, 61, 6403-6410.
[20] Zhang S. M.; Liu X. X.; Hao P. F.; Li G. P.; Shen J. J.; Fu Y. L. Inorg. Chem. 2023, 62, 14912-14921.
[21] Yu T. L.; Hao P. F.; Shen J. J.; Li, H. H. Fu, Y. L. Dalton Trans.2016, 45, 16505-16510.
[22] Sun C.; Wang M. S.; Li P. X.; Guo, G. C. Angew. Chem. Int. Ed.2017, 56, 554-558.
[23] Shen J. J.; Kang X. L.; Hao, P. F. Fu, Y. L. Inorg. Chem. Front.2020, 7, 4865-4871.
[24] Hao P. F.; Wang W. P.; Zhang, L. F. Shen, J. J.; Fu, Y. L. Inorg. Chem. Front.2019, 6, 287-292.
[25] Zhang X. L.; Shen J. J.; Wang F.; Hao P. F.; Fu, Y. L. Dyes Pigm.2019, 162, 815-820.
[26] Hao P. F.; Gao B. H.; Li G. P.; Shen J. J.; Fu, Y. L. Inorg. Chem. Front.2022, 9, 2852-2861.
[27] Yang X. D.; Chen C.; Zhang, Y. J. Zhang, Y. J.; Cai L. X.; Tan B.; Zhang J. Dalton Trans.2016, 45, 4522-4527.
[28] Xu H. L.; Zeng X. S.; Li J.; Xu, Y. C; Qiu, H. J.; Xiao D. R. CrystEngComm,2018, 20, 2430-2439.
[29] Fu C.; Wang H. Y.; Zhang, G. S. Li, L.; Sun Y. N.; Fu J. W.; Zhang H. CrystEngComm,2018, 20, 4849-4856.
[30] Zhu H. H.; Hao P. F.; Shen Q.; Shen J. J.; Li G. P.; Zhao G. Z.; Xing H. Y.; Fu Y. L. CrystEngComm,2021, 23, 3356-3363.
[31] Chhapoliya M.; Singh, D. Materials Today Chem.2025, 44, 102563.
[32] Hu H.; Zhang Y. Y.; Ma H.; Yang Y. C.; Mei S.; Li J.; Xu J. F.; Zhang, X. Angew. Chem. Int. Ed.2023, 41, e202308513.
[33] Zhang S. M.; Hao P. F.; Li, G. P. Shen, J. J.; Fu, Y. L. Dyes Pigm.2023, 220, 111677.
[34] Zhang S. M.; Hao P. F.; Zhang Y. F.; Li, G. P. Shen, J. J.; Yang H. Y.; Fu, Y. L. Inorg. Chem. Front.2025, 12, 3919-3926.
[35] Zhang S. M.; Hao P. F.; Zhang Y. F.; Li, G. P. Shen, J. J.; Fu, Y. L. Inorg. Chem. Front.2024, 11, 1226-1237.
[36] Park S. H.; Lee J. Y.; Jeong H. Y.; Bae S. G.; Kang J. G.; Moon D. H.; Park J. H. Chem,2022, 8, 1-18.
[37] Zheng S. T.; Wu T.; Zuo F.J. Am. Chem. Soc. 2021, 134, 1934.
[38] Liu J. J.; Xia S. B.; Liu D.; Hou J. Y.; Suo H. B.; Cheng, F. X. Dyes Pigm.2020, 177, 108269.
[39] Pan J.Q.; Wei, H. R.; Chen, Y. R.; Jia, M. Z.; Tan, B.; Zhang, J. Angew. Chem. Int. Ed. 2024, e202412790.
[40] Yu W. Y.Master Dissertation, Shanxi Normal University, Taiyuan, 2022 (in Chinese).
(于炜玉, 硕士论文, 山西师范大学, 太原, 2022.)