Synthesis and evaluation of in vitro and in vivo anticancer activities of 8-hydroxyquinoline-modified platinum(II) polypyridyl complexes

  • Qi-Pin Qin ,
  • Qiu-Ming Li ,
  • Ju-Mei Zhang ,
  • Ming-Xiong Tan ,
  • Hong Liang
Expand
  • aGuangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin 537000;
    bSchool of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004

Received date: 2025-09-06

  Online published: 2025-10-11

Supported by

Natural Science Foundation of Guangxi (no. 2025GXNSFAA069961), the Bagui Youth top-notch personnel program of Guangxi (no. 2024ZKBGQB01) and the National Natural Science Foundation (no. 22267020).

Abstract

To overcome the problems of high toxicity and poor selectivity of cisplatin-based drugs, a novel 8-hydroxyquinoline-modified platinum(II) polypyridine complex, [Pt(IQ-O)(Py)]Cl (PyPt), was synthesized using 5,7-diiodo-8-hydroxyquinoline platinum(II) complex [Pt(IQ-O)(DMSO)Cl] (PtIQ) as an intermediate and 2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)quinolin-8-ol (Py) as an auxiliary ligand. The structures of PyPt and PtIQ were characterized by nuclear magnetic resonance (NMR), ultraviolet-visible spectrophotometry (UV-vis), infrared spectroscopy (IR) and elemental analysis. Density functional theory calculations showed that the energy gaps between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of PyPt and PtIQ were 2.3 eV and 3.2 eV, respectively, indicating that there were differences in the anticancer activities of PyPt and PtIQ. Comparing with human lung cancer cells (A549) and human lung cancer cisplatin-resistant cells (A549/DDP), PyPt exhibited better inhibitory effects on human breast cancer cells (MDA-MB-231), with an IC50 value of 0.05±0.04μmol/L, which was superior to cis-[PtCl2(DMSO)2] (>50.0 μmol/L), PtIQ (9.0±0.1 μmol/L), IQ-OH (>50.0 μmol/L), Py (>50.0 μmol/L) and the clinical drug cisplatin (11.1±0.3 μmol/L). Additionally, PyPt had little toxicity to normal liver cells (HL-7702), indicating that PyPt had better selectivity for MDA-MB-231 cancer cells. Flow cytometry and microscopic imaging showed that PyPt could significantly induce apoptosis (ca. 48.0±0.9 %) and senescence (IOD value=(1.9±0.1)×106) in cells, which was superior to PtIQ (apoptosis rate=44.2±0.6 %, senescence IOD value=(1.8±0.1)×106) and the blank control group (apoptosis rate=6.1±0.6%, senescence IOD value=(2.1±0.1)×105). Molecular docking results indicated that the binding energy of PyPt with the DNA strand in telomerase reverse transcriptase (hTERT) was -53.0 kJ/mol, which was significantly stronger than that of PtIQ (-30.2 kJ/mol). Comet assay, immunofluorescence assay, real time-PCR detection (RT-qPCR) and western blotting experiments showed that PyPt induced apoptosis and senescence in MDA-MB-231 cancer cells by inhibiting hTERT expression, activating caspase3/7 proteins and inducing DNA damage, and its induction ability was stronger than that of PtIQ. In vivo experiments showed that PyPt had a good inhibitory effect on MDA-MB-231 solid tumors with an inhibition rate of 44.4%, and did not affect the survival rate (n=6) and body weight of mice. In conclusion, we developed a novel 8-hydroxyquinoline-modified platinum(II) polypyridine anticancer metal drug targeting DNA and hTERT.

Cite this article

Qi-Pin Qin , Qiu-Ming Li , Ju-Mei Zhang , Ming-Xiong Tan , Hong Liang . Synthesis and evaluation of in vitro and in vivo anticancer activities of 8-hydroxyquinoline-modified platinum(II) polypyridyl complexes[J]. Acta Chimica Sinica, 0 : 1 . DOI: 10.6023/A25090300

References

[1] Štarha P.; Křikavová, R. Coordin. Chem. Rev.2024, 501, 215578.
[2] Cai L.; Chen H.; Wang Y.; Zhang J.; Song D.; Tan Y.; Guo Z.; Wang, X. J. Med. Chem.2025, 68, 9162-9175.
[3] Liang B.-B.; Liu Q.; Liu B.; Yao H.-G.; He J.; Tang C.-F.; Peng K.; Su X.-X.; Zheng Y.; Ding J.-Y.; Shen J.; Cao Q.; Mao, Z.-W. Angew. Chem. Int. Ed.2023, 62, e202312170.
[4] Chen S.; Zhou Q.; Ng K.-Y.; Xu Z.; Xu W.; Zhu G.Inorg. Chem. Front. 2024, 11, 3085-3118.
[5] Sun P.; Wang J.-Q.; Xie Q.; Ren X.-L.; Qiao X.; Xu, J.-Y. Inorg. Chem. Front.2024, 11, 2914-2931.
[6] (a) Mo, X.; Chen, K.; Chen, Z.; Chu, B.; Liu, D.; Liang, Y.; Xiong, J.; Yang, Y.; Cai, J. Y.; Liang, F. P.Inorg. Chem. 2021, 60, 16128-16139. (b) Qin Q.-P.; Wang S.-L.; Tan M.-X.; Liu Y.-C.; Meng T.; Zou B.-Q.; Liang, H. Eur. J. Med. Chem.2019, 161, 334-342.(c) Qin, Q.-P.; Chen, Z.-F.; Qin, J.-L.; He, X.-J.; Li, Y.-L.; Liu, Y.-C.; Huang, K.-B.; Liang, H. Eur. J. Med. Chem., 2015, 92, 302-313.
[7] Shao T.-M.; Wei Z.-Z.; Luo X.-L.; Qin Q.-P.; Tan M.-X.; Zeng J.-J.; Liang C.-J.; Liang H.New J. Chem. 2022, 44, 19885-19890.
[8] Yang Y.; Du L.-Q.; Huang Y.; Liang C.-J.; Qin Q.-P.; Liang, H. J. Inorg. Biochem.2023, 241, 112152.
[9] Wu R.-C.; Zhang J.-M.; Huang X.-Q.; Li Q.-M.; Zhou Z.; Liang H.; Tan M.-X.; Qin, Q.-P. New J. Chem.2025, 49, 6561-6567.
[10] (a) Zhang M.; Li L.; Li S.; Liu Z.; Zhang N.; Sun B.; Wang Z.; Jia D.; Liu M.; Wang, Q. J. Med. Chem.2023, 66, 3393-3410. (b) Meng T.; Tang S.-F.; Qin Q.-P.; Liang Y.-L.; Wu C.-X.; Wang C.-Y.; Yan H.-T.; Dong J.-X.;Liu, Y.-C. Med. Chem. Commun. 2016, 7,1802-1811. (c) Ferraz, K.S.O.; Reis, D.C.; Da Silva, J.G.; Souza-Fagundes, E.M.; Baran, E.J.; Beraldo, H.Polyhedron 2013, 63, 28-35.
[11] Santos C.M.; Cabrera S.; Rios-Luci, C.; Padron, J.M.; Solera, I.L.; Quiroga, A.G.; Medrano, M.A.; Navarro-Ranninger, C.; Aleman, J.Dalton Trans. 2013, 42, 13343-13348.
[12] Živković M. D.; Kljun J.; Ilic-Tomic, T.; Pavic, A.; Veselinović, A.; Manojlović, D. D.; Nikodinovic-Runic, J.; Turel, I.Inorg. Chem. Front. 2018, 5, 39-53.
[13] Low K.H.; Xu Z.X.; Xiang H.F.; Chui S.S.Y.; Roy, V.A.L.; Che, C.M.Chem. Asian J. 2011, 6, 3223-3229.
[14] Zhou C.-H.; Zhao, X. J. Organomet. Chem.2011, 696, 3322-3327.
[15] (a) Qin, L.-Q.; Wei, Z.-Z.; Yang, L.; Qin, Q.-P.; Zeng, J.-J.; Tan, M.-X.; Liang, H.Medicinal Chemistry Research 2021, 30, 1419-1426. (b) Wang F.-Y.; Yang L.-M.;Wang S.-S.; Lu H.; Wang X.-S.; Lu Y.; Ni W.-X.; Liang H.; Huang, K.-B. J. Med. Chem.2024, 67, 6738-6748.
[16] Qin Q.-P.; Wang S.-L.; Tan M.-X.; Wang Z.-F.; Luo D.-M.; Zou B.-Q.; Liu Y.-C.; Yao P.-F.; Liang, H. Eur. J. Med. Chem.2018, 158, 106-122.
[17] Lunagariya M. V.; Thakor K. P.; Varma R. R.; Waghela B. N.; Pathak C.; Patel, M. N. Med. Chem. Commun.2018, 9, 282-298.
[18] Li L.; Chen Y.; Zhang M.; Li S.; Feng S.; He Y.-Q.; Zhang N.; Liu Z.; Liu M.; Wang Q.Dalton Trans. 2024, 53, 13890-13905.
[19] (a) Ma X.; Lu J.; Yang P.; Zhang Z.; Huang B.; Li R.; Ye R. Dalton Trans.2022, 51, 13902-13909. (b) Xu X.; Wang S.; Mi Y.; Zhao H.; Zheng Z.; Zhao, X. J. Coord. Chem.2019, 72, 201-217.
[20] Liao L.-S.; Chen Y.; Hou C.; Liu Y.-H.; Su G.-F.; Liang H.; Chen, Z.-F. J. Med. Chem.2023, 66, 10497-10509.
[21] (a) Feng, T.; Tang, Z.; Shu, J.; Wu, X.; Jiang, H.; Chen, Z.; Chen, Y.; Ji, L.; Chao, H. Angew. Chem. Int. Ed. 2024, 63, e202405679. (b) Liang, C.-J.; Wu, R.-C.; Huang, X.-Q.; Qin, Q.-P.; Liang, H.; Tan, M.-X. Dalton Trans. 2024, 53, 2143-2152. (c) Zhao, T.; Wang, P.; Ji, M.; Li, S.; Yang, M.; Pu, X. Acta Chim. Sinica 2021, 79, 1385-1393 (in Chinese). (赵添堃, 王鹏, 姬明宇, 李善家, 杨明俊, 蒲秀瑛, 化学学报, 2021, 79, 1385-1393). (d) Zhang, L.; Li, W.; Liu, L.; Zheng, C.; Wang, Y.; Xu, Y.; Shi, D.; Nie, X.; Guo, J.; Zhu, C.; Wang, J. Chin. J. Org. Chem. 2017, 37, 1721-1729. (in Chinese). (张 磊, 李文赟, 刘来, 郑诚月, 王杨, 徐应淑, 史大斌, 聂绪强, 国佳莹, 朱春媛, 王京, 有机化学, 2017, 37, 1721-1729.). (e) Hu, J.; Zhang, C.; Zhu, W.; He, Y.; Peng, S.; Chen, Z.; Li, M.; Liu, Z.; Chen, H. Chin. J. Org. Chem. 2024, 44, 1870-1883. (in Chinese). (胡健灵, 张超, 朱文达, 何业谱, 彭姝羚, 陈振强, 李明月, 刘志军, 陈河如, 有机化学, 2024, 44, 1870-1883.).
[22] (a) Wang M.-M.; Deng D.-P.; Zhou A.-M.; Su Y.; Yu Z.-H.; Liu H. K.; Su Z. Inorg. Chem.2024, 63, 4758-4769. (b) Charif R.; Granotier-Beckers C.; Charlotte Bertrand H.; Poupon J.; Segal-Bendirdjian E.; Teulade-Fichou M.-P.; Boussin F. D.; Bombard, S. Chem. Res. Toxicol.2017, 30, 1629-1640.(c) Tabrizi, L.; Thompson, K.; Mnich, K.; Chintha, C.; Gorman, A. M.; Morrison, L.; Luessing, J.; Lowndes, N. F.; Dockery, P.; Samali, A.; Erxleben, A. Mol. Pharmaceutics 2020, 17, 3009-3023.
[23] (a) Liu, Q.; Cai, D.; Qi, Y.; Le, X. Acta Chim. Sinica 2020, 78, 263-270 (in Chinese). (刘启雁, 蔡戴宏, 戚永育, 乐学义, 化学学报, 2020, 78, 263-270.). (b) Wang, X.; Gu, Y.; Chen, D.; Fang, Y.; Huang, Y. Acta Chim. Sinica 2010, 68, 2463-2470 (in Chinese). (王晓星, 顾彦, 陈登霞, 方艳芬, 黄应平, 化学学报, 2010, 68, 2463-2470).
[24] Xiong K.; Ouyang C.; Liu J.; Karges J.; Lin X.; Chen X.; Chen Y.; Wan J.; Ji L.; Chao H.Angew. Chem. Int. Ed. 2022, 61, e202204866.
[25] Afzaal H.; Altaf R.; Ilyas U.; Zaman S. U.; Hamdani S. D. A.; Khan S.; Zafar H.; Babar M. M.; Duan, Y. Frontiers in Pharmacology2022, 13, 1048691.
[26] Sanner M. F.J. Mol. Graph. Model.1999, 17, 57-61.
[27] (a) Wang C.-X.; Zhang Z.-L.; Yin Q.-K.; Tu J.-L.; Wang J.-E.; Xu Y.-H.; Rao Y.; Ou T.-M.; Huang S.-L.; Li D.; Wang H.-G.; Li Q.-J.; Tan J.-H.; Chen S.-B.; Huang, Z.-S. J. Med. Chem.2020, 17, 9752-9772. (b) Gu, Y.-Q.; Yang, K.; Yang, Q.-Y.; Li, H.-Q.; Hu, M.-Q.; Ma, M.-X.; Chen, N.-F.; Liu, Y.-H.; Liang, H.; Chen, Z.-F.J. Med. Chem. 2023, 66, 9592-9606.
[28] (a) Chai, J.; Du, C.; Wu, J.W.; Kyin, S.; Wang, X.; Shi, Y. Nature 2000, 406, 855-862. (b) Zhou, Q.; Zhang, X.-B.; Liu, A.-L.; Niu, Z.-G.; Li, G.-N.; Yu, F.-B. Bioorg. Chem. 2025, 161, 108507. (c) Qin, P.; Ma, H.; Zhang, F.-G.; Ma, J.-A. Acta Chim. Sinica 2023, 81, 697-702 (in Chinese). (秦沛, 马海, 张发光, 马军安, 化学学报, 2023, 81, 697-702).
Outlines

/