Article

Interface modification and dipole realization for efficient carbon-based CsPbI2Br perovskite solar cells

  • Gao Lin ,
  • Jiang Dongbin ,
  • Xu Yuan ,
  • Yao Qing ,
  • Liu Fengli ,
  • Sun Weihai ,
  • Du Zhenbo ,
  • Sun Liuxue ,
  • Wu Jihuai ,
  • Lan Zhang
Expand
  • aSchool of Materials Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education. Fujian Key Laboratory of Photoelectric Functional Materials, Xiamen;
    bSchool of Materials Science and Engineering, Henan Institute of Technology, Xinxiang;
    cInstrumental Analysis Center, Huaqiao University, Xiamen
<sup>#</sup>These authors contributed equally to this work

Received date: 2025-09-12

  Online published: 2025-11-28

Supported by

Project supported by the National Natural Science Foundation of China (51972123, 52372190), the Natural Science Foundation of Fujian Province (2023J01116), and the Engineering Research Center of Environmentally Friendly Functional Materials of the Ministry of Education (51101, 5032502).

Abstract

The preparation of carbon-based hole-free transport layer all-inorganic perovskite CsPbI2Br solar cells is straightforward, cost-effective, and currently one of the key research areas. However, the interface between the CsPbI2Br perovskite layer, fabricated via one-step solution spin-coating, and the carbon electrode is characterized by a high density of defects. These defects contribute to substantial non-radiative recombination, which severely limits the device’s photoconversion efficiency. To address this issue, we present an exceptionally simple interface modification strategy aimed at enhancing the interface quality between the CsPbI2Br perovskite layer and the carbon electrode. Specifically, we introduce 2-aminobenzothiazole (BTA) as an interface modifier. By spin-coating an isopropanol solution containing various concentrations of BTA onto the surface of the CsPbI2Br perovskite layer, we passivate the surface defects, thereby improving the interface quality and boosting both device performance and operational stability. The thiazole ring and amino group in BTA effectively reduce the defect density on the CsPbI2Br perovskite surface through Lewis acid-base coordination. This modification substantially improves both the surface morphology and the interface contact of the CsPbI2Br perovskite film, leading to an enhanced internal electric field and a reduction in non-radiative recombination. Furthermore, the inherent dipole moment of BTA molecules generates an electric dipole layer at the CsPbI2Br interface, which modulates the electronic states and work function at the interface, optimizing the energy level alignment between the perovskite layer and the carbon electrode. As a result, the interface characteristics between the CsPbI2Br perovskite film and the carbon electrode are effectively tuned, facilitating improved hole extraction and transport. Consequently, the device incorporating BTA treatment exhibits a photoelectric conversion efficiency (PCE) of 14.17%, an open-circuit voltage (VOC) of 1.25 V, a short-circuit current density (JSC) of 14.62 mA cm⁻2, and a fill factor (FF) of 77.61%. These values are significantly higher compared to those of devices without BTA treatment (PCE: 12.40%, VOC: 1.21 V, JSC: 14.19 mA cm⁻2, FF: 72.23%). Furthermore, after 30 days of exposure to air at 20% relative humidity, the BTA-treated device retains 80% of its initial efficiency, whereas the untreated device only maintains 50% of its initial efficiency. This demonstrates that the BTA-modified device offers remarkable reproducibility and environmental stability. The proposed BTA interface modification strategy provides valuable insights for the development of efficient and stable carbon-based hole-free transport layer all-inorganic CsPbI2Br perovskite solar cells.

Cite this article

Gao Lin , Jiang Dongbin , Xu Yuan , Yao Qing , Liu Fengli , Sun Weihai , Du Zhenbo , Sun Liuxue , Wu Jihuai , Lan Zhang . Interface modification and dipole realization for efficient carbon-based CsPbI2Br perovskite solar cells[J]. Acta Chimica Sinica, 0 : 20251128 -20251128 . DOI: 10.6023/A25090310

References

[1] Chen Y. B.; Zheng D. X.; Wang N.; Liu J. S.; Yu F. Y.; Wu S. J.; Liu S. Z.; Li Z. P.Acta Chim. Sinica. 2024, 82 987 (in Chinese). (陈宇波, 郑德旭, 王楠, 刘吉双, 于凤阳, 吴飒建, 刘生忠, 李智鹏. 化学学报, 2024, 82 987.)
[2] He J. S.; Bai Y.; Luo Z. X.; Ran R.; Zhou W.; Wang W.; Shao Z. P.Energy Environ. Sci. 2025, 18(5), 2136-2164.
[3] Liu C.; Cheng Y. B.; Ge Z. Y.Chem. Soc. Rev. 2020, 49(6), 1653-1687.
[4] Lopez-V.P.; Jiménez-T. J. A.; García-R. M.; Anta, J. A.; Ravishankar, S.; Bou, A.; Bisquert,J.ACS Energy Lett. 2017, 2(6), 1450-1453.
[5] Sherkar T.S.; Momblona C.; Gil-E. L.; Avila, J.; Sessolo, M.; Bolink, H.; Koster, L.J.ACS Energy Lett. 2017, 2(5): 1214-1222.
[6] Li L. C.; Rao H. S.; Wu Z. J.; Hong J.; Zhang J. X.; Pan Z. X.; Zhong X. H.Adv. Funct. Mater. 2024, 34(1), 2308428.
[7] Zuo L. J.; Li Z. X.; Chen H. Z.Chin. J. Chem. 2023, 41, 861-876.
[8] Isikgor F. H.; Zhumagali S.; T. Merino, L. V.; Bastiani, M. D.; McCulloch, I.; Wolf, S. D.Nat. Rev. Mater. 2023, 8(2), 89-108.
[9] Yan F.; Zhou Y. Y.; Loi M. A.; Saliba M.Adv. Energy Mater. 2023, 13(33), 2302239.
[10] Noel N. K.; Abate A.; Stranks S. D.; Parrott E. S.; Burlakov V. M.; Goriely A.; Snaith H. J.ACS Nano. 2014, 8(10), 9815-9821.
[11] Gu X. J.; Xiang W. C.; Tian Q. W.; Liu S. Z.Angew Chem Int Edit. 2021, 60(43), 23164-23170.
[12] Deng Y. X.; Zhang H. X.; Li X.; Wang R.ChemSusChem. 2022, 15(2), e202101965.
[13] Wen T. Y.; Yang S.; Liu P. F.; Tang L. J.; Qiao H. W.; Chen X.; Yang X. H.; Hou Y.; Yang H. G.Adv. Energy Mater. 2018, 8(13), 1703143.
[14] Ye W. X.; Zeng Y. X.; Chen J. L.; He J. T.; Zou Y.; Yang R. X.; Huang J. C.; Peng, Z. Y; Chen, J.Mater. Today Energy. 2025, 48, 101799.
[15] Han Q. J.; Yang S. Z.; Wang L.; Yu F. Y.; Zhang C.; Wu M. X.; Ma T. L.Sol. Energy. 2021, 216, 351-357.
[16] Wang Z.; Baranwal A.; Muhammad A.; Zhang P. T.; Kapil G.; Ma T.; Hayase S. Z.;Nano Energy. 2019, 66, 104180.
[17] Yan Z. L; Wang D. Jing,Y.; Wang, X.; Zhang, H. Y.; Liu, X.; Wang, S. B.; Wang, C. Y.; Sun, W. H.; Wu, J. H.; Lan, Z.Chem. Eng. J. 2022, 433, 134611.
[18] Wang F.; Geng W.; Zhou Y.; Fang H. H.; Tong C. J.; Loi M. A.; Liu L. M.; Zhao N.Adv. Mater. 2016, 28(45), 9986-9992.
[19] Zhao S. H.; Xie J. S.; Cheng G. H.; Xiang Y. R.; Zhu H. Y.; Guo W. Y.; Wang H.; Qin M. C.; Lu X. H.; Qu J. L.; Wang J. N.; Xu J. B.; Yan K. Y.Small. 2018, 14(50), 1803350.
[20] Duan J. L.; Wang M.; Wang Y. L.; Zhang J. S.; Guo Q. Y.; Zhang Q. Y.; Duan Y. Y.; Tang Q. W.ACS Energy Lett. 2021, 6(6), 2336-2342.
[21] Zhumadil G. Z.; Cao M. H.; Han Y.; Pavlenko V.; Nigmetova G.; Yelzhanova Z.; Parkhomenko H. P.; Ergasheva Z.; Aidarkhanov D.; Balanay M. P.; Jumabekov A. N.; Li G.; Ren Z. W.; Ng A.ACS Appl. Mater. Interfaces. 2024, 16(45), 63059-63072.
[22] Cao Q.; Wang T.; Yang J. B.; Zhang Y. X.; Li Y. K.; Pu X. Y.; Zhao J. S.; Chen H.; Li X. Q.; Tojiboyev I.; Chen J. Z.; Etgar L.; Li X. H.Adv. Funct. Mater. 2022, 32(32), 2201036.
[23] Song Z. H.; Sun K. X.; Meng Y. Y.; Zhu Z. W.; Wang Y. H.; Zhang W. F.; Bai Y.; Lu X. Y.; Tian R. J.; Liu C.; Ge Z. Y.Adv. Mater. 2025, 37(3), 2410779.
[24] Zeng J. J.; Gao H. X.; Li Z. W.; Liu W. W.; Liu J.; Lu S. Y.; Liu C. Y.; Guo W. B.Adv. Funct. Mater. 2025, e08942.
[25] Lin Z. C.; Wu Y. B.; Ouyang X. H.Angew Chem Int Edit. 2025, 64(17), e202424472.
[26] Wang R. X.; Lin J. D.; Lin Z. C.; Zhang X. Y.; Wu Y. B.; Xiao Y. H.; Ouyang X. H.Chem. Eng. J. 2025, 508, 161053.
[27] Zhang L.; Zhang Y.; Wu H.; Wang F.; Yan K.; Zhou Y.; Xu X.; Fu W.; Hu H.; Wu G.; Du M.; Chen H.Adv. Energy Mater. 2024, 14(34), 2401907.
[28] Sun H. L.; Dai P. F.; Li X. T.; Ning J. Y.; Wang S. H.; Qi Y.;J. Energy Chem. 2021, 60, 300-333.
[29] Jeon N. J.; Noh J. H.; Yang W. S.; Kim Y. C.; Ryu S. C.; Seo J. W.; Seok S. I.Nature. 2015, 517(7535), 476-480.
[30] Li K. P.; Zhu Y.; Chang X.; Zhou M. N.; Yu X. X.; Zhao X. L.; Wang T.; Cai Z. M.; Zhu X.; Wang H.; Chen J. Z.; Zhu T.Adv. Energy Mater. 2025, 15(11), 2404335.
[31] Wang Y. F.; Liu J. H.; Yu M.; Zhong J. Y.; Zhou Q. S.; Qiu J. M.; Zhang X. L.,Acta Phys-Chim Sin. 2021, 37(3), 2407025(in Chinese). (王云飞, 刘建华, 于美, 钟锦岩, 周琪森, 邱俊明, 张晓亮. 物理化学学报, 2021, 37 (3), 2006030.)
[32] Wang Z. Y.; Kang S. Q.; Zhou X.; Chen H. Y.; Jiang X. X.; Zhang Z. C.; Zheng J. L.; Zhang R. P.; Chen W. J.; Zhang J. D.; Li Y. W.Chin. J. Chem. 2024, 42(16), 1819.
[33] Cui C. C.; Kou D. X.; Zhou W. H.; Zhou Z. J.; Yuan S. J.; Qi Y. F.; Zheng Z.; Wu S. X.J. Energy Chem. 2022, 67, 555-562.
[34] Wang D.; Li W. J.; Du Z. B.; Li G. D.; Sun W. H.; Wu J. H.; Lan Z.J. Mater. Chem. C. 2020, 8(5), 1649-1655.
[35] Zhang Y. Q.; Liu X. T.; Li P. W.; Duan Y. Y.; Hu X. T.; Li F. Y.; Song Y. L.Nano Energy. 2019, 56, 733-740.
[36] Song J.; Su X. Z.; Yao Qi. N.; Yang X. K.; Zhao Y. L.; Qiang Y. H.; Ren C. G.,Chin. J. Inorg. Chem. 2023, 39(2), 327-336(in Chinese). (宋健, 苏星宙, 姚倩楠, 杨雪昆, 赵宇龙, 强颖怀, 任春光. 无机化学学报, 2023, 39 (2), 327-336.)
[37] Duan B. W.; Guo L. B.; Yu Q.; Shi J. J.; Wu H. J.; Luo Y. H.; Li D. M.; Wu S. X.; Zheng Z.; Meng Q. B.J. Energy Chem. 2020, 40, 196-203.
[38] Yin X. Y.; Zhu W. H.; Shi P. Y.; Li Z. S.; Wang Y. C.; Zhu N. M.; Wang Y.; Sun W. H.Chin. J. Inorg. Chem. 2025,41, 469(in Chinese). (殷逍遥, 朱文昊, 施谱垚, 李宗盛, 王艺超, 朱能敏, 汪杨, 孙伟海. 无机化学学报,2025,41,469.)
[39] Deng S. C.; Wang S. F.; Wang Y. Y.; Xiao Q.; Meng Y. N.; Kou D. X.; Zhou W. H.; Zhou Z. J.; Zheng Z.; Wu S. X.J. Energy Chem. 2024, 95, 77-85.
[40] Dong P. Y.; Jiang Y.; Yang Z. C.; Liu L. C.; Li G.; Wen X. Y.; Wang Z.; Shi X. B.; Zhou G. F.; Liu J. M.; Gao J. W.,Acta Phys-Chim Sin. 2025, 41, 2407025(in Chinese). (董鹏宇, 姜月, 杨正池, 刘立城, 李固, 文鑫洋, 王祯, 施信波, 周国富, 刘俊明, 高进伟. 物理化学学报, 2025, 41, 2407025.)
[41] Hu Y. Q.; Cai L. J.; Xu Z.; Wang Z.; Zhou Y. F.; Sun G. P.; Sun T. M.; Qi Y. B.; Zhang S. F.; Tang Y. F.Inorg. Chem. 2023, 62(14), 5408-5414.
[42] Du J.; Duan J. L.; Yang X. Y.; Duan Y. Y.; Zhou Q. Z.; Tang Q. W.Angew Chem Int Edit. 2021, 60(19), 10608-10613.
[43] Deng C. Y.; Tan L. N.; Wu J. H.; Yang Y. Q.; Du Y. T.; Chen Q.; Chen X.; Sun L. X.; Yu F. D.; Sun W. H.; Gao P.; Lan Z.Adv. Energy Mater. 2024, 14(10), 2303387.
[44] Deng Y. Q.; Zhou Z. J.; Zhang X.; Cao L.; Zhou W. H.; Kou D. X.; Qi Y. F.; Yuan S. J.; Zheng Z.; Wu S. X.J. Energy Chem. 2021, 61, 1-7.
Outlines

/