Research Progress on the Preparation and Recovery of Nuclear-Grade Zirconium Using Molten Salts

  • Zhou Mingyu ,
  • Liu Lebin ,
  • Mei Lei ,
  • Liu Yalan ,
  • Shi Weiqun
Expand
  • a Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
    b Institute of Nuclear Fuel Cycle and Materials, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China;
    c School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2026-01-04

Abstract

Nuclear-grade zirconium is a critical metallic material for nuclear power plants. It boasts a low neutron absorption cross-section and corrosion resistance that are far superior to those of ordinary commercial zirconium materials. With high economic value and vital strategic significance, it serves as a strategic reserve resource critical to national energy security. Consequently, the efficient and economical preparation and recovery of nuclear-grade zirconium have garnered increasing attention. Molten salt technology serves as a crucial pathway for the separation of zirconium and hafnium, the preparation of metallic zirconium, and the recycling of the used zirconium, offering advantages such as a simplified process and strong adaptability. This review outlines the key role of molten salts in the life cycle management of nuclear-grade zirconium, including the analysis and comparison of the application characteristics of different molten salt systems (fluoride, chloride, and fluorine-chloride mixed salt systems) in the preparation and recovery of metallic zirconium. In addition, it focuses on systematically sorting out and summarizing the electroreduction behavior of zirconium ions in molten salts, aiming to promote the green metallurgy and recycling of nuclear-grade zirconium.

Cite this article

Zhou Mingyu , Liu Lebin , Mei Lei , Liu Yalan , Shi Weiqun . Research Progress on the Preparation and Recovery of Nuclear-Grade Zirconium Using Molten Salts[J]. Acta Chimica Sinica, 0 : 202611 -202611 . DOI: 10.6023/A25110360

References

[1] Krishnan R.; Asundi M.Proceedings of the Indian Academy of Sciences Section C: Engineering Sciences 1981, 4, 41-56.
[2] 熊炳昆.锆铪冶金; 冶金工业出版社, 2002.
[3] Rickover H.G.; Geiger L.D.; Lustman B.EEnergy Research and Development Administration, Washington, DC (USA).Div.of Naval Reactors, 1975.
[4] Northwood, D.O.Mater.Des. 1985, 6, 58-70.
[5] Azevedo C.d.F. Failure Anal.2011, 18, 1943-1962.
[6] Terrani K.A.J.Nucl.Mater.2018, 501, 13-30.
[7] Sabol G.P.; Comstock R.J.; Nayak U.P.ASTM Spec.Tech.Publ.2000, 1354, 525-544.
[8] Sabol G.P.; Comstock R.J.; Weiner R.A.; Larouere P.; Stanutz R.N.ASTM Spec.Tech.Publ.1993, 1245, 724-724.
[9] Vesterlund G.1980.
[10] Ibrahim E.; Cheadle B.Can.Metall.Q.1985, 24, 273-281.
[11] Gambogi J.Metal Prices in the United States Through 2010, 201.
[12] Rudisill T.S.J.Nucl.Mater.2009, 385, 193-195.
[13] 박재영.Ph.D.Dissertation, Seoul National University, Seoul, 2014.
[14] Srinivasan G.; Kumar K.S.; Rajendran B.; Ramalingam P.Nucl.Eng.Des.2006, 236, 796-811.
[15] Mirza M.; Abdulaziz R.; Maskell W.C.; Wilcock S.; Jones A.H.; Woodall S.; Jackson A.; Shearing P.R.; Brett D.J.Energy Environ.Sci.2023, 16, 952-982.
[16] Wang T., Yun D., Du P.N., & Wu, X.Y.Materials Reports, 2025, 1-13.
(in Chinese).(王挺; 恽迪; 杜沛南; 伍晓勇.材料导报,2025, 1-31.)
[17] Huang K.; Kammerer C.; Keiser Jr, D.; Sohn, Y.J.Phase Equilib.Diffus.2014, 35, 146-156.
[18] Takahashi Y.; Yamawaki M.; Yamamoto K.J.Nucl.Mater.1988, 154, 141-144.
[19] Aly A.; Beeler B.; Avramova M.J.Nucl.Mater.2022, 561, 153523.
[20] Sundaram C.; Mannan S.Sadhana 1989, 14, 21-57.
[21] Carmack W.; Porter D.; Chang Y.; Hayes S.L.; Meyer M.; Burkes D.; Lee C.; Mizuno T.; Delage F.; Somers J.J.Nucl.Mater.2009, 392, 139-150.
[22] Kaity S.; Banerjee J.; Nair M.; Ravi K.; Dash S.; Kutty T.; Kumar A.; Singh R.J.Nucl.Mater.2012, 427, 1-11.
[23] Matthews C.; Unal C.; Galloway J.; Keiser Jr, D.D.; Hayes, S.L.Nucl.Technol.2017, 198, 231-259.
[24] Ahluwalia R.; Hua T.Q.; Geyer H.K.Nucl.Technol.1999, 126, 289-302.
[25] Fredrickson G.L.; Patterson M.N.; Vaden D.; Galbreth G.G.; Yoo T.-S.; Price J.; Flynn E.J.; Searle R.N.Prog.Nuclear Energy 2022, 143, 104037.
[26] Walter C.; Golden G.; Olson N.U--Pu--Zr metal alloy: a potential fuel for LMFBR's, 1975.
[27] Janney D.E.; Hayes S.L.; Adkins C.A.Nucl.Technol.2020, 206, 1-22.
[28] Pahl R.; Porter D.; Lahm C.; Hofman G.Metall.Trans.A 1990, 21, 1863-1870.
[29] Shatalov V.; Nikonov V.; Kotsar M.At.Energy 2008, 105, 242-247.
[30] Liu L.; Bao Y.; Ji H.; Mei Z.; Li R.; Li Y.; Yuan Z.; Chen, J.Resour.Conserv.Recycl.2026, 226, 108708.
[31] Xu, L.; Xiao, Y.; Van Sandwijk, A.; Xu, Q.; Yang, Y.In Energy Materials 2014: Conference Proceedings, 2014; Springer: pp 451-457.
[32] Xu L.; Xiao Y.; Van Sandwijk, A.; Xu, Q.; Yang, Y.J.Nucl.Mater.2015, 466, 21-28.
[33] Wang L.Y.; Lee, M.S.J.Ind.Eng.Chem.2016, 39, 1-9.
[34] Kalavathi V.; Bhuyan R.K.Mater.Today: Proceedings 2019, 19, 781-786.
[35] Li S.; Che Y.; Shu Y.; He J.; Song J.; Yang B.J.Electrochem.Soc.2021, 168, 062508.
[36] Cao G.Idaho National Laboratory (INL), Idaho Falls, ID (United States) 2024, 2474874.
[37] Liu H., Wang H.J., Xu W., Xu G.D., Liu L., & Wang, J.L.China Materials, 2023, 42, 335-342
(in Chinese).(刘辉; 王化军; 许文; 徐国栋; 刘璐; 王俊莲.中国材料进展2023, 42, 335-342.)
[38] Rudling P.; Strasser A.; Garzarolli F.; van Swam, L.IZNA7 special topic report Welding of Zirconium Alloys 2007.
[39] Mishra B.Review of Extraction, Processing, Properties, and Applications of Reactive Metals: 1999 TMS Annual Meeting, San Diego, CA, February 28-March 15, 1999; John Wiley & Sons, 2013.
[40] Branken D.; Lachmann G.; Krieg H.; Bruinsma O.J.Quantum Chem.2011, 111, 682-693.
[41] Ma S.; Yang F.; Tan F.; Xie M.; Yu S.; Xue L.; Li Z.; Hu T.Sep.Purif.Technol.2021, 279, 119779.
[42] Ma Z.; Chen W.; Yan X.; Wang L.; Yan G.; Wu G.; Zhang J.; Zhang S.Sep.Purif.Technol.2025, 364, 132620.
[43] Hu C.; Zhao H.; Sun R.; Yang X.; Wang J.Sep.Purif.Technol.2025, 353, 128539.
[44] Qin W.; Xu S.; Xu G.; Xie Q.; Wang C.; Xu Z.Chem.Eng.J.2013, 225, 528-534.
[45] Yang L.; Liu R.; Xie M.; Yang, F.ACS Appl.Mater.Interfaces2025, 17, 24369-24381.
[46] Hevesy, G.v.Chem.Rev.1925, 2, 1-41.
[47] Sajin N.; Pepelyaeva E.Separation of hafnium from zirconium and production of pure zirconium dioxide.In Proc.Intl.Conf.on Peaceful Uses of At.Energy,1958; Vol.8, p 559.
[48] Fischer W.; Chalybaeus W.The separation of hafnium from zirconium by distribution Z.Anorg.Chem 1947, 255, 79.
[49] Fang C.; Zhong X.; Xiao L.; Chen M.Rare Met.Lett.2007, 1.
[50] Biswas S.; Basu S.J.Radioanal.Nucl.Chem.1999, 242, 253-258.
[51] Levitt A.E.; Freund H.J.Am.Chem.Soc.1956, 78, 1545-1549.
[52] Banda R.; Lee M.S.Sep.Purif.Rev.2015, 44, 199-215.
[53] Ak Ağlar, S.J.Chem.Res. 2019, 4, 106-111.
[54] Minh L.Q.; Long N.V.D.; Duong, P.L.T.; Jung, Y.; Bahadori, A.; Lee, M.Energies 2015, 8, 10354-10369.
[55] Panfilov A.; Korobkov A.; Buzmakov V.; Tereshin V.; Ivshina A.; Abramov A.; Danilov D.; Chukin A.; Polovov I.Russian Metallurgy (Metally) 2024, 2024, 164-170.
[56] Stephens W.W.Zirconium in the Nuclear Industry 1984, 5-36.
[57] Sathiyamoorthy D.; Shetty S.; Bose D.; Gupta C.High Temp.Mater.Processes 1999, 18, 213-226.
[58] Tangri R.; Bose D.; Gupta C.J.Chem.Eng.Data 1995, 40, 823-827.
[59] Xiao Y.;Sandwijk, A.v.; Yang, Y.; Laging, V.Molten Salts Chemistry and Technology 2014, 389-401.
[60] Niselson L.A.; Egorov E.A.; Chuvilina E.L.; Arzhatkina O.A.; Fedorov V.D.J.Chem.Eng.Data 2009, 54, 726-729.
[61] Xu L.; Xiao Y.; van Sandwijk, A.; Zhao, Z.; Li, J.; Xu, Q.; Yang, Y.Sep.Sci.Technol.2016, 51, 1664-1674.
[62] Smirnov M.V.; Komarov V.E.; Baraboshkin, A.N.In Doklady Akad.Nauk SSSR,1960; Inst.of Electrochemistry Ural Div., Academy of Sciences, USSR: Vol.133.
[63] Megy J.A.; Freund H.Metall.Trans.B 1979, 10, 413-421.
[64] Kirihara T.; Nakagawa I.; Seki Y.; Honda Y.Process of separation of hafnium from zirconium by molten salt electrolysis.Patents: 1989.
[65] Kirihara T.; Nakagawa I.; Seki Y.; Honda Y.; Ichihara Y.Process for separation of hafnium tetrachloride from zirconium tetrachloride and electrode.Patents: 1990.
[66] Kirihara T.; Nakagawa I.; Seki Y.; Honda Y.; Ichihara Y.Process for separation of hafnium tetrachloride from zirconium tetrachloride.Patents: 1991.
[67] Kipouros G.; Flengas S.ECS Proceedings Volumes 1990, 1990, 626.
[68] Guang-Sen, C.; Okido, M.; Oki, T.J.Appl.Electrochem.1990, 20, 77-84.
[69] Van Arkel, A.; de Boer, J.H.Z.Anorg.Allg.Chem.1925, 148, 345-350.
[70] Alnutt D.B.; Scheer C.L.Transactions of the Electrochemical Society 1945, 88, 195.
[71] Kroll W.Journal of the franklin institute 1955, 260, 169-192.
[72] Kroll W.; Anderson C.T.; Holmes H.; Yerkes L.; Gilbert H.J.Electrochem.Soc.1948, 94, 1.
[73] Starratt F.W.JOM 1959, 11, 441-443.
[74] Ogarev A.; Shentiakov V.Preparation of ductile zirconium by fused salt electrolysis; USSR, 1959.
[75] Wu Y.K., Chen S., Xu Z.G., & Wang, L.[J].Chin.J.Rare Met., 2009, 33, 62-65
(in Chinese).(吴延科; 陈松; 徐志高; 王力军.稀有金属2009, 33, 62-65.)
[76] Marden J.Bull.US Bur.Mines 1921, 186.
[77] Mellors G.; Senderoff S.J.Electrochem.Soc.1966, 113, 60.
[78] Steinberg M.; Sibert M.; Wainer E.J.Electrochem.Soc.1954, 101, 63.
[79] Raynes B.C.; Thellmann E.L.; Steinberg M.A.; Wainer E.J.Electrochem.Soc.1955, 102, 137.
[80] Polyakova L.; Stangrit P.Electrochimica Acta 1982, 27, 1641-1645.
[81] Wu Y.; Xu Z.; Chen S.; Wang L.; Li G.Rare Metals 2011, 30, 8-13.
[82] Wang Q.; Wang Y.L.; Liu H.J.; Zeng C.L.J.Electrochem.Soc.2016, 163, D636.
[83] Zhang X.; Huang J.; Min D.; Wen T.; Shi Z.; Yang S.Int.J.Hydrogen Energy 2022, 47, 6544-6551.
[84] Martinez G.; Couch D.Metall.Trans.1972, 3, 575-578.
[85] Kipouros G.; Flengas S.J.Electrochem.Soc.1985, 132, 1087.
[86] Qiu Z.; Li Z.; Fu H.; Zhang H.; Zhu Z.; Wang A.; Li H.; Zhang L.; Zhang H.J.Mater.Sci.Technol.2020, 46, 33-43.
[87] Quaranta D.; Massot L.; Gibilaro M.; Mendes E.; Serp J.; Chamelot P.Electrochimica Acta 2018, 265, 586-593.
[88] Ueda M.; Teshima T.; Matsushima H.; Ohtsuka T.J.Solid State Electrochem.2015, 19, 3485-3489.
[89] Wang Y.; Sun R.; Yang L.; Liu H.; Zeng C.J.Electrochem.Soc.2023, 170, 106506.
[90] Fray D.J.Jom 2001, 53, 27-31.
[91] Chen G.Z.; Fray D.Mineral Miner.Process.Extr.Metall.2006, 115, 49-54.
[92] Chen G.Z.; Gordo E.; Fray D.J.Metall.Mater.Trans.B 2004, 35, 223-233.
[93] Lai P.; Hu M.; Qu Z.; Gao L.; Bai C.; Zhang S.Int.J.Electrochem.Sci.2018, 13, 4763-4774.
[94] Zhao G.; Xu Y.; Cai Y.Int.J.Electrochem.Sci 2022, 17, 2.
[95] Li Q.Y.; Du J.H.; Xi Z.P.Rare Met.Mater.Eng.2007, 36, 390-393
(in Chinese).(李晴宇; 杜继红; 奚正平.稀有金属材料与工程2007, 390-393.)
[96] Abdelkader A.; Kilby K.T.; Cox A.; Fray D.Chem.Rev.2013, 113, 2863-2886.
[97] Arroyave R.; Kaufman L.; Eagar T.W.Calphad 2002, 26, 95-118.
[98] Fray D.; Chen G.Mater.Sci.Technol.2004, 20, 295-300.
[99] Abdelkader A.; Daher A.; Abdelkareem R.A.; El-Kashif, E.Metall.Mater.Trans.B 2007, 38, 35-44.
[100] Peng J.; Jiang K.; Xiao W.; Wang D.; Jin X.; Chen G.Z.Chem.Mater.2008, 20, 7274-7280.
[101] Peng J.; Chen H.; Jin X.; Wang T.; Wang D.; Chen G.Z.Chem.Mater.2009, 21, 5187-5195.
[102] Mohandas K.; Fray D.J.Appl.Electrochem.2011, 41, 321-336.
[103] Peng J.; Li G.; Chen H.; Wang D.; Jin X.; Chen G.Z.J.Electrochem.Soc.2009, 157, F1.
[104] Zou X.Y.; Xie H.W.; Zhai Y.C.; Lang X.C.Adv.Mater.Res.2011, 146, 775-779.
[105] Lee M.-J.; Noh J.-S.; Kim K.-Y.; Lee, J.-H.Phys.Met.Metallogr.2014, 115, 1356-1361.
[106] Gritsai L.V.;Omel'chuk, A.A.ECS Transactions 2016, 75, 391.
[107] Khan M.S.; Mukherjee A.; Shakila L.; Arunkumar V.; Kumaresan R.J.Electrochem.Soc.2023, 170, 092507.
[108] Feng Q.; Lv M.; Mao L.; Duan B.; Yang Y.; Chen G.; Lu X.; Li C.Metals 2023, 13, 408.
[109] Jiao S.; Zhu H.J.Mater.Res.2006, 21, 2172-2175.
[110] Zhu H.; Jiao S.; Xiao J.; Zhu J.In Extractive Metallurgy of Titanium, Elsevier, 2020; pp 315-329.
[111] Takeda O.; Suda K.; Lu X.; Zhu H.J.Sustain.Metall.2018, 4, 506-515.
[112] Li S.; Che Y.; Song J.; Shu Y.; Xu B.; He J.; Yang B.Metall.Mater.Trans.B 2021, 52, 3276-3287.
[113] Li S.; Lv Z.; He J.; Song J.J.Mol.Liq.2025, 420, 126831.
[114] Li S.; Che Y.; Song J.; Shu Y.; He J.; Xu B.; Yang B.Sep.Purif.Technol.2021, 274, 118803.
[115] Chen Y.; Zhao R.; Lv Z.; Li S.; He J.; Song J.Int.J.Refract.Met.Hard Mater.2025, 107213.
[116] Shang X.; Li S.; Che Y.; Shu Y.; He J.; Song J.Sep.Purif.Technol.2021, 275, 118096.
[117] Song W.; Chen X.; Jia Y.; Yang M.; Ye G.; Zhu F.Materials 2025, 18, 2634.
[118] Collins E.D.;DelCul, G.; Spencer, B.B.; Brunson, R.; Johnson, J.; Terekhov, D.; Emmanuel, N.Procedia Chemistry 2012, 7, 72-76.
[119] Pucciarelli M.; Palethorpe S.J.; Spencer J.; Banford A.; Lettieri P.; Paulillo A.Prog.Nuclear Energy 2024, 168, 105026.
[120] Collins E.D.; Hylton T.D.; DelCul, G.D.; Spencer, B.B.; Hunt, R.D.; Johnson, J.A.Completion of a Chlorination Test Using 250 grams of High-Burnup Used Fuel Cladding from a North Anna Pressurized Water Reactor; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN(United States), 2018.
[121] Jeon M.K.; Lee C.H.; Lee Y.L.; Choi Y.T.; Kang K.H.; Park G.I.JNFCWT2013,11, 55-61.
[122] 전민구; 이창화; 허철민; 이유리; 최용택; 강권호; 릉근뉴.방사성폐기물학회지2013,11, 69-75(in Korean).
[123] Borjas Nevarez, R.; McNamara, B.; Poineau, F.Nucl.Technol.2021,207, 263-269.
[124] Vestal B.K.; Travis J.; Albert A.; Bruffey S.; McFarlane, J.; Collins, E.D.; Hunt, R.D.; Barnes, C.E.J.Nucl.Mater.2023,578, 154339.
[125] Vestal B.K.Ph.D.Dissertation, University of Tennessee, Knoxville, 2023.
[126] Conrad J.K.; Woods M.E.; Horne G.P.Radiat.Phys.Chem.2023,206, 110732.
[127] Park J.; Choi S.; Sohn S.; Kim K.-R.; Hwang I.S.Nucl.Eng.Des.2014,275, 44-52.
[128] Sohn S.; Choi S.; Park J.; Hwang I.S.Int.J.Energy Res.2021,45, 11775-11790.
[129] Sohn S.; Park J.; Hwang I.S.Int.J.Electrochem.Soc.2018,13, 3897-3909.
[130] Lee C.H.; Kang K.H.; Jeon M.K.; Heo C.M.; Lee Y.L.J.Electrochem.Soc.2012,159, D463.
[131] Willit J.; Miller W.; Battles J.J.Nucl.Mater.1992,195, 229-249.
[132] Liu K.; Liu Y.-L.; Pang J.-W.; Yuan L.-Y.; Wang L.; Chai Z.-F.; Shi W.-Q.Sci.China Chem.2017,60, 264-274.
[133] Cai Y.; Liu H.; Xu Q.; Song Q.; Liu H.; Xu L.Int.J.Electrochem.Soc.2015,10, 4324-4334.
[134] Gibilaro M.; Massot L.; Chamelot P.; Cassayre L.; Taxil P.Electrochimica Acta2013,95, 185-191.
[135] Li Y.; Zhang Y.; Liu Y.; Li G.; Dong, X.J.Wuhan Univ.Technol.-Mater.Sci.Ed.2023,38, 1155-1160.
[136] Park K.T.; Lee T.H.; Jo N.C.; Nersisyan H.H.; Chun B.S.; Lee H.H.; Lee J.H.J.Nucl.Mater.2013,436, 130-138.
[137] Frandsen B.A.; Nickerson S.D.; Clark A.D.; Solano A.; Baral R.; Williams J.; Neuefeind J.; Memmott M.J.Nucl.Mater.2020,537, 152219.
[138] Ishii Y.; Sato K.; Salanne M.; Madden P.A.; Ohtori N.J.Phys.Chem.B2014,118, 3385-3391.
[139] Fabian C.P.; Le T.H.; Bond A.M.J.Electrochem.Soc.2022,169, 036506.
[140] Zuo Y.; Sun Y.-X.; Huang W.; Gong Y.J.Electrochem.Soc.2025,172, 056504.
[141] Li S.ECS Proceedings Volumes2002,2002, 541.
[142] Hoover R.O.; Yoon D.; Phongikaroon S.J.Nucl.Mater.2016,476, 179-187.
[143] Pint, P.; Flengas, S.Inst.Min.Metall., Trans., Sect.C;(United Kingdom)1976,87.
[144] Baboian R.; Hill D.; Bailey R.J.Electrochem.Soc.1965,112, 1221.
[145] Suzuki T.Denki Kagaku oyobi Kogyo Butsuri Kagaku1971,39, 864-867.
[146] Inman D.; Hills G.; Young L.; Bockris J.O.M.Annals of the New York Academy of Sciences (US)1960,79.
[147] Ahluwalia R.K.; Hua T.Q.; Geyer H.K.Nucl.Technol.2001,133, 103-118.
[148] Roper R.; Harkema M.; Sabharwall P.; Riddle C.; Chisholm B.; Day B.; Marotta P.Ann.Nucl.Energy2022,169, 108924.
[149] Mishra B.; Olson D.L.J.Phys.Chem.Solids2005,66, 396-401.
[150] Silvester D.S.; Compton R.G.Zeitschrift für Physikalische Chemie2006,220, 1247-1274.
[151] Xu L.; Xiao Y.; Xu Q.; Van Sandwijk, A.; Li, J.; Zhao, Z.; Song, Q.; Yang, Y.Rsc Advances2016,6, 84472-84479.
[152] Groult H.; Barhoun A.; El Ghallali, H.; Borensztjan, S.; Lantelme, F.J.Electrochem.Soc.2007,155, E19.
[153] Groult H.; Barhoun A.; Briot E.; Lantelme F.; Julien C.J.Fluorine Chem.2011,132, 1122-1126.
[154] Xu L.; Xiao Y.; Xu Q.; van Sandwijk, A.; Zhao, Z.; Song, Q.; Cai, Y.; Yang, Y.J.Nucl.Mater.2017,488, 295-301.
[155] Manning, D.; Mamantov, G.J.Electroanal.Chem.(Netherlands) Superseded by J.Electroanal.Chem.Interfacial Electrochem.1963,6.
[156] Basile F.; Chassaing E.; Lorthioir G.J.Appl.Electrochem.1981,11, 645-651.
[157] Sakamura Y.J.Electrochem.Soc.2004,151, C187.
[158] Ghosh S.; Vandarkuzhali S.; Venkatesh P.; Seenivasan G.; Subramanian T.; Reddy B.P.; Nagarajan K.J.Electroanal.Chem.2009,627, 15-27.
[159] Yang L.; Hudson R.Trans.Am.Inst.Min.Metall.Pet.Eng.1959,215, 589-601.
[160] Park J.; Choi S.; Sohn S.; Kim K.-R.; Hwang I.S.J.Electrochem.Soc.2013,161, H97.
[161] Chen Z.; Zhang M.; Han W.; Wang X.; Tang D.J.Alloys Compd.2008,459, 209-214.
[162] Chen Z.; Li Y.J.; Li S.J.J.Alloys Compd.2011,509, 5958-5961.
[163] Han W.; Wang W.; Li M.; Wang J.; Sun Y.; Yang X.; Zhang M.Sep.Purif.Technol.2020,232, 115965.
[164] Han W.; Wang W.; Li H.; Zhao Y.; Wang Y.; Liu R.; Li M.ACS Sustain.Chem.Eng.2021,9, 17393-17402.
[165] Ding L.; Yan Y.; Smolenski V.; Novoselova A.; Xue Y.; Ma F.; Zhang M.Sep.Purif.Technol.2021,279, 119683.
[166] Xu L.; Xiao Y.; Xu Q.; Song Q.; Yang Y.Int.J.Electrochem.Soc.2017,12, 6393-6403.
[167] Murakami T.; Kato T.J.Electrochem.Soc.2008,155, E90.
[168] Cai Y.; Liu H.; Xu Q.; Song Q.; Xu L.Electrochimica Acta2015,161, 177-185.
[169] Murakami T.; Hayashi H.J.Nucl.Mater.2022,558, 153330.
[170] Cha H.L.; Yun J.-I.Electrochem.Commun.2017,84, 86-89.
[171] Fabian C.P.; Luca V.; Le T.H.; Bond A.M.; Chamelot P.; Massot L.; Caravaca C.; Hanley T.L.; Lumpkin G.R.J.Electrochem.Soc.2012,160, H81.
[172] Xiao Y.Q.; Wang Y.Q.; Lin R.S.; Jia Y.H.; He H.J.Nucl.Radiochem.2018, 40, 100-104
(in Chinese).(肖益群; 王有群; 林如山; 贾艳虹; 何辉.核化学与放射化学2018,40, 100-104.)
[173] Li S.; Che Y.; Song J.; Li C.; Shu Y.; He J.; Yang B.J.Electrochem.Soc.2020,167, 023502.
[174] Winand R.Electrochimica Acta1962,7, 475-508.
[175] Lister R.; Flengas S.Can.J.Chem.1965,43, 2947-2969.
[176] Swaroop B.; Flengas S.Can.J.Chem.1966,44, 199-213.
[177] SAKAKURA T.J.Electrochem.Soc.of Japan1967,35, 75-84.
[178] Yao B.-L.; Liu K.; Liu Y.-L.; Yuan L.-Y.; He H.; Chai Z.-F.; Shi W.-Q.J.Electrochem.Soc.2018,165, D6.
[179] Mao P.; Zhao R.; Li S.; Lv Z.; He J.; Song J.J.Mol.Liq.2025,425, 127254.
[180] Lee C.H.; Lee Y.L.; Jeon M.K.; Choi Y.T.; Kang K.H.; Park G.-I.; Park K.-T.ECS Transactions2014,64, 609.
[181] Lee C.H.; Kang D.Y.; Jeon M.K.; Kang K.H.; Paek S.-W.; Ahn D.-H.; Park K.-T.Int.J.Electrochem.Soc.2016,11, 566-576.
[182] Basile F.; Chassaing E.; Lorthioir G.J.Appl.Electrochem.1984,14, 731-739.
[183] Toth L.; Quist A.; Boyd G.J.Phys.Chem.1973,77, 1384-1388.
[184] Lugovoi V.; Deviatkin S.; Kaptay G.; Kuznetsov S.ECS Proceedings Volumes1996,1996, 303.
[185] Malyshev V.; Gab A.Russian Journal of Non-Ferrous Metals2009,50, 485-491.
[186] Malyshev V.; Gab A.; Izvarina A.; Popescu A.-M.; Constantin V.Rev.Roum.Chim2010,55, 179-185.
Outlines

/