Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (5): 1968-1973.DOI: 10.6023/cjoc20210203 Previous Articles Next Articles
ARTICLES
郭芳1, 由君1,*(), 武文菊1, 喻艳超1,*(), 井彬1, 刘波1
收稿日期:
2021-02-19
修回日期:
2021-03-23
发布日期:
2021-04-16
通讯作者:
由君, 喻艳超
基金资助:
Fang Guo1, Jun You1,*(), Wenju Wu1, Yanchao Yu1,*(), Bin Jing1, Bo Liu1
Received:
2021-02-19
Revised:
2021-03-23
Published:
2021-04-16
Contact:
Jun You, Yanchao Yu
About author:
Supported by:
Share
Fang Guo, Jun You, Wenju Wu, Yanchao Yu, Bin Jing, Bo Liu. Study on the Cyanide Substitution Reaction of Acetone Cannolhydrin as Cyanogen Source[J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1968-1973.
Entry | Base | Amount of base/equiv. | Time/h | Yield/% |
---|---|---|---|---|
1 | 咪唑 | 1.5 | 24 | Trace |
2 | N-丁基咪唑 | 1.5 | 24 | Trace |
3 | 无水哌嗪 | 1.5 | 10 | 20 |
4 | 三乙胺 | 1.5 | 10 | 23 |
5 | 吡啶 | 1.5 | 10 | 40 |
6 | 叔丁醇钾 | 1.5 | 10 | 25 |
7 | DMAP | 1.5 | 10 | 53 |
8 | NaOH | 1.5 | 10 | 62 |
9 | LiOH?H2O | 1.1 | 6 | 85 |
10 | LiOH?H2O | 1.2 | 5 | 89 |
11 | LiOH?H2O | 1.3 | 4 | 92 |
12 | LiOH?H2O | 1.5 | 3 | 98 |
13 | LiOH?H2O | 1.8 | 3 | 95 |
14 | LiOH | 1.5 | 3 | 98 |
15 | CH3COONa | 1.5 | 10 | Trace |
16 | Na2CO3 | 1.5 | 10 | Trace |
17 | K2CO3 | 1.5 | 10 | Trace |
18 | NaHCO3 | 1.5 | 10 | Trace |
19b | NaOH | 1.5 | 10 | 60 |
20b | CH3COONa | 1.5 | 10 | Trace |
21b | Na2CO3 | 1.5 | 10 | Trace |
Entry | Base | Amount of base/equiv. | Time/h | Yield/% |
---|---|---|---|---|
1 | 咪唑 | 1.5 | 24 | Trace |
2 | N-丁基咪唑 | 1.5 | 24 | Trace |
3 | 无水哌嗪 | 1.5 | 10 | 20 |
4 | 三乙胺 | 1.5 | 10 | 23 |
5 | 吡啶 | 1.5 | 10 | 40 |
6 | 叔丁醇钾 | 1.5 | 10 | 25 |
7 | DMAP | 1.5 | 10 | 53 |
8 | NaOH | 1.5 | 10 | 62 |
9 | LiOH?H2O | 1.1 | 6 | 85 |
10 | LiOH?H2O | 1.2 | 5 | 89 |
11 | LiOH?H2O | 1.3 | 4 | 92 |
12 | LiOH?H2O | 1.5 | 3 | 98 |
13 | LiOH?H2O | 1.8 | 3 | 95 |
14 | LiOH | 1.5 | 3 | 98 |
15 | CH3COONa | 1.5 | 10 | Trace |
16 | Na2CO3 | 1.5 | 10 | Trace |
17 | K2CO3 | 1.5 | 10 | Trace |
18 | NaHCO3 | 1.5 | 10 | Trace |
19b | NaOH | 1.5 | 10 | 60 |
20b | CH3COONa | 1.5 | 10 | Trace |
21b | Na2CO3 | 1.5 | 10 | Trace |
Entry | Solvent | Time/h | Yield/% | |
---|---|---|---|---|
1 | DMI | 3 | 97 | |
2 | NMP | 3 | 95 | |
3 | HMPA | 3 | 96 | |
4 | DMF | 10 | 50 | |
5 | Acetone | 24 | Trace | |
6 | CH3CN | 24 | Trace | |
7 | THF | 10 | 13 | |
8 | DMI/Acetone (V:V=1:1) | 10 | 64 | |
9 | DMI/CH3CN (V:V=1:1) | 10 | 67 | |
10 | DMI/THF (V:V=1:1) | 3 | 98 | |
11 | DMI/THF (V:V=1:3) | 3 | 98 | |
12 | DMI/THF (V:V=1:5) | 6 | 93 |
Entry | Solvent | Time/h | Yield/% | |
---|---|---|---|---|
1 | DMI | 3 | 97 | |
2 | NMP | 3 | 95 | |
3 | HMPA | 3 | 96 | |
4 | DMF | 10 | 50 | |
5 | Acetone | 24 | Trace | |
6 | CH3CN | 24 | Trace | |
7 | THF | 10 | 13 | |
8 | DMI/Acetone (V:V=1:1) | 10 | 64 | |
9 | DMI/CH3CN (V:V=1:1) | 10 | 67 | |
10 | DMI/THF (V:V=1:1) | 3 | 98 | |
11 | DMI/THF (V:V=1:3) | 3 | 98 | |
12 | DMI/THF (V:V=1:5) | 6 | 93 |
Entry | Substrate R—X | Time/h | Product (4) | Yield/% |
---|---|---|---|---|
1 | PhCH2Cl | 3.5 | PhCH2CN (4a) | 88 |
2 | PhCH2CH2Cl | 4.0 | PhCH2CH2CN (4b) | 85 |
3 | ClCH2CH2CN | 4.0 | CNCH2CH2CN (4c) | 78 |
4 | ClCH2CH2Cl | 4.5 | CNCH2CH2CN (4c) | 77 |
5 | ClCH2CH2CH2CH2Cl | 3.5 | CNCH2CH2CH2CH2CN (4d) | 79 |
6 | ClCH2CH2COOCH2CH3 | 4.0 | CNCH2CH2COOCH2CH3 (4e) | 77 |
7 | ClCH2CH2CH2CH3 | 7.0 | CNCH2CH2CH2CH3 (4f) | 71 |
8 | Cl(CH2)7CH3 | 6.5 | CN(CH2)7CH3 (4g) | 72 |
9 | Cl(CH2)11CH3 | 5.5 | CN(CH2)11CH3 (4h) | 72 |
10 | Cl(CH2)13CH3 | 5.0 | CN(CH2)13CH3 (4i) | 74 |
11 | Cl(CH2)15CH3 | 4.5 | CN(CH2)15CH3 (4j) | 76 |
12 | Cl(CH2)17CH3 | 4.0 | CN(CH2)17CH3 (4k) | 77 |
13 | PhCH2CH2CH2Br | 3.0 | PhCH2CH2CH2CN (4l) | 91 |
14 | PhCHBrCH3 | 4.0 | PhCHCNCH3(4m) | 91 |
15 | PhCHBrPh | 5.0 | PhCHCNPh (4n) | 93 |
16 | BrCH2CH2COOCH3 | 4.0 | CNCH2CH2COOCH3(4o) | 85 |
17 | BrCH2CH2CH2COOCH3 | 3.5 | CNCH2CH2CH2COOCH3 (4p) | 89 |
18 | Br(CH2)6COOCH2CH3 | 3.0 | CN(CH2)6COOCH2CH3 (4q) | 93 |
19 | BrCH2CH2Br | 4.0 | CNCH2CH2CN (4c) | 80 |
20 | BrCH2CH2CH2CH2Br | 3.0 | CNCH2CH2CH2CH2CN (4d) | 85 |
21 | BrCH2CH2CH2CH3 | 6.0 | CNCH2CH2CH2CH3 (4f) | 75 |
22 | Br(CH2)7CH3 | 5.5 | CN(CH2)7CH3 (4g) | 77 |
23 | Br(CH2)11CH3 | 4.5 | CN(CH2)11CH3 (4h) | 79 |
24 | Br(CH2)13CH3 | 4.0 | CN(CH2)13CH3 (4i) | 81 |
25 | Br(CH2)15CH3 | 3.5 | CN(CH2)15CH3 (4j) | 83 |
26 | Br(CH2)17CH3 | 3.0 | CN(CH2)17CH3 (4k) | 86 |
27 | PhCH2I | 2.5 | PhCH2CN (4a) | 99 |
28 | PhCH2CH2CH2I | 2.5 | PhCH2CH2CH2CN (4l) | 92 |
29 | PhCHICH3 | 3.0 | PhCHCNCH3 (4m) | 93 |
30 | ICH2CH2CH2COOCH3 | 3.0 | CNCH2CH2CH2COOCH3 (4p) | 90 |
31 | ICH2CH2CH2CH3 | 5.0 | CNCH2CH2CH2CH3 (4f) | 80 |
32 | I(CH2)7CH3 | 4.5 | CN(CH2)7CH3 (4g) | 83 |
33 | I(CH2)11CH3 | 4.0 | CN(CH2)11CH3(4h) | 85 |
34 | I(CH2)13CH3 | 3.5 | CN(CH2)13CH3 (4i) | 87 |
35 | I(CH2)15CH3 | 3.0 | CN(CH2)15CH3 (4j) | 89 |
36 | I(CH2)17CH3 | 2.5 | CN(CH2)17CH3 (4k) | 92 |
Entry | Substrate R—X | Time/h | Product (4) | Yield/% |
---|---|---|---|---|
1 | PhCH2Cl | 3.5 | PhCH2CN (4a) | 88 |
2 | PhCH2CH2Cl | 4.0 | PhCH2CH2CN (4b) | 85 |
3 | ClCH2CH2CN | 4.0 | CNCH2CH2CN (4c) | 78 |
4 | ClCH2CH2Cl | 4.5 | CNCH2CH2CN (4c) | 77 |
5 | ClCH2CH2CH2CH2Cl | 3.5 | CNCH2CH2CH2CH2CN (4d) | 79 |
6 | ClCH2CH2COOCH2CH3 | 4.0 | CNCH2CH2COOCH2CH3 (4e) | 77 |
7 | ClCH2CH2CH2CH3 | 7.0 | CNCH2CH2CH2CH3 (4f) | 71 |
8 | Cl(CH2)7CH3 | 6.5 | CN(CH2)7CH3 (4g) | 72 |
9 | Cl(CH2)11CH3 | 5.5 | CN(CH2)11CH3 (4h) | 72 |
10 | Cl(CH2)13CH3 | 5.0 | CN(CH2)13CH3 (4i) | 74 |
11 | Cl(CH2)15CH3 | 4.5 | CN(CH2)15CH3 (4j) | 76 |
12 | Cl(CH2)17CH3 | 4.0 | CN(CH2)17CH3 (4k) | 77 |
13 | PhCH2CH2CH2Br | 3.0 | PhCH2CH2CH2CN (4l) | 91 |
14 | PhCHBrCH3 | 4.0 | PhCHCNCH3(4m) | 91 |
15 | PhCHBrPh | 5.0 | PhCHCNPh (4n) | 93 |
16 | BrCH2CH2COOCH3 | 4.0 | CNCH2CH2COOCH3(4o) | 85 |
17 | BrCH2CH2CH2COOCH3 | 3.5 | CNCH2CH2CH2COOCH3 (4p) | 89 |
18 | Br(CH2)6COOCH2CH3 | 3.0 | CN(CH2)6COOCH2CH3 (4q) | 93 |
19 | BrCH2CH2Br | 4.0 | CNCH2CH2CN (4c) | 80 |
20 | BrCH2CH2CH2CH2Br | 3.0 | CNCH2CH2CH2CH2CN (4d) | 85 |
21 | BrCH2CH2CH2CH3 | 6.0 | CNCH2CH2CH2CH3 (4f) | 75 |
22 | Br(CH2)7CH3 | 5.5 | CN(CH2)7CH3 (4g) | 77 |
23 | Br(CH2)11CH3 | 4.5 | CN(CH2)11CH3 (4h) | 79 |
24 | Br(CH2)13CH3 | 4.0 | CN(CH2)13CH3 (4i) | 81 |
25 | Br(CH2)15CH3 | 3.5 | CN(CH2)15CH3 (4j) | 83 |
26 | Br(CH2)17CH3 | 3.0 | CN(CH2)17CH3 (4k) | 86 |
27 | PhCH2I | 2.5 | PhCH2CN (4a) | 99 |
28 | PhCH2CH2CH2I | 2.5 | PhCH2CH2CH2CN (4l) | 92 |
29 | PhCHICH3 | 3.0 | PhCHCNCH3 (4m) | 93 |
30 | ICH2CH2CH2COOCH3 | 3.0 | CNCH2CH2CH2COOCH3 (4p) | 90 |
31 | ICH2CH2CH2CH3 | 5.0 | CNCH2CH2CH2CH3 (4f) | 80 |
32 | I(CH2)7CH3 | 4.5 | CN(CH2)7CH3 (4g) | 83 |
33 | I(CH2)11CH3 | 4.0 | CN(CH2)11CH3(4h) | 85 |
34 | I(CH2)13CH3 | 3.5 | CN(CH2)13CH3 (4i) | 87 |
35 | I(CH2)15CH3 | 3.0 | CN(CH2)15CH3 (4j) | 89 |
36 | I(CH2)17CH3 | 2.5 | CN(CH2)17CH3 (4k) | 92 |
[1] |
(a) Fleming, F. F.; Yao, L.; Ravikumar, P. C. J. Med. Chem. 2010, 53, 7902.
doi: 10.1021/jm100762r pmid: 19791828 |
(b) Dhillon, S.; Weber, J. Drugs 2009, 69, 2103.
doi: 10.2165/11201170-000000000-00000 pmid: 19791828 |
|
(c) Ma, D. Y. Chin. J. Org. Chem. 2008, 28, 1439. (in Chinese).
pmid: 19791828 |
|
(马大友, 有机化学, 2008, 28, 1439).
pmid: 19791828 |
|
[2] |
(a) Yu, Z. W.; Li, L. Y.; Shen, Z. M. Chin. J. Org. Chem. 2017, 37, 1273. (in Chinese).
doi: 10.6023/cjoc201612015 |
(俞峥炜, 李林奕, 沈增明, 有机化学, 2017, 37, 1273.)
doi: 10.6023/cjoc201612015 |
|
(b) Yan, G.; Zhang, Y.; Wang, J. Adv. Synth. Catal. 2017, 359, 4068.
doi: 10.1002/adsc.v359.23 |
|
(c) Zhou, H. Y.; Li, N. N.; Yang, J. Y. Chin. J. Org. Chem. 2016, 36, 502. (in Chinese).
|
|
(周红艳, 李娜娜, 杨靖亚, 有机化学, 2016, 36, 502.)
doi: 10.6023/cjoc201510033 |
|
(d) Wang, H. S.; Zeng, J. E. Chin. J. Org. Chem. 2012, 32, 934. (in Chinese).
doi: 10.6023/cjoc1110242 |
|
(王宏社, 曾君娥, 有机化学, 2012, 32, 934.)
doi: 10.6023/cjoc1110242 |
|
(e) Fang, G. N.; You, J.; Yu, Y. C.; Jing, J. K.; Liu, B.; Wu, W. J. Chin. J. Org. Chem. 2020, 40, 2871. (in Chinese).
doi: 10.6023/cjoc202003047 |
|
(房观念, 由君, 喻艳超, 荆军凯, 刘波, 武文菊, 有机化学, 2020, 40, 2871.)
doi: 10.6023/cjoc202003047 |
|
[3] |
(a) Shimizu, S.; Kito, K.; Sasaki, Y. Chem. Commun. 1997, 17, 1629.
|
(b) Fort, Y.; Dubosclard-Gottardi, C. Synth. Commun. 1996, 26, 2811.
doi: 10.1080/00397919608005215 |
|
(c) Mouradzadegun, A.; Ganjali, M. R.; Mostafavi, M. A. Appl. Organomet. Chem. 2018, 32, e4214.
doi: 10.1002/aoc.v32.4 |
|
(d) Cao, Y. Q.; Chen, B. H.; Pei, B. G. Synth. Commun. 2001, 31, 2203.
doi: 10.1081/SCC-100104474 |
|
[4] |
(a) Ren, Y.; Yan, M.; Zhao, S. Tetrahedron Lett. 2011, 52, 5107.
doi: 10.1016/j.tetlet.2011.07.112 |
(b) Saha, D.; Adak, L.; Mukherjee, M. Org. Biomol. Chem. 2012, 10, 952.
doi: 10.1039/C1OB06467C |
|
(c) Xia, A.; Xie, X.; Chen, H. Org. Lett. 2018, 20, 773.
|
|
(d) Ratani, T. S.; Bachman, S.; Fu, G. C. J. Am. Chem. Soc. 2015, 137, 13902.
doi: 10.1021/jacs.5b08452 |
|
(e) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. J. Fluorine Chem. 2007, 128, 818.
doi: 10.1016/j.jfluchem.2007.02.014 |
|
(f) Wang C, Wang C, Wang Q. Chem.-Eur. J. 2007, 13, 6484.
doi: 10.1002/(ISSN)1521-3765 |
|
[5] |
(a) Yabe, O.; Mizufune, H.; Ikemoto, T. Synlett 2009,1291.
|
(b) Satoh, Y.; Obora, Y. RSC Adv. 2014, 4, 15736.
doi: 10.1039/C4RA01153H |
|
(c) Zieger, H. E.; Wo, S. J. Org. Chem. 1994, 59, 3838.
doi: 10.1021/jo00093a016 |
|
(d) Echigo, Y.; Watanabe, Y.; Mukaiyama, T. Chem. Lett. 1977, 6, 697.
doi: 10.1246/cl.1977.697 |
|
(e) Munemori, D.; Tsuji, H.; Uchida, K. Synthesis 2014, 46, 2747.
doi: 10.1055/s-00000084 |
|
[6] |
Powell, K. J.; Han, L. C.; Sharma, P. Org. Lett. 2014, 16, 2158.
doi: 10.1021/ol500618w |
[7] |
Dowd, P.; Wilk, B. K.; Wlostowski, M. Synth. Commun. 1993, 23, 2323.
doi: 10.1080/00397919308013790 |
[8] |
Shapiro, E. A.; Pereverzeva, Y. O.; Nefedov, A. O.; Éismont, M. Y. Russ. Chem. B 1989, 38, 2432.
|
[9] |
(a) Meng, H.; Gao, S.; Luo, M. Eur. J. Org. Chem. 2006,4617.
pmid: 21557494 |
(b) Geng, H.; Huang, P. Q. Tetrahedron 2015, 71, 3795.
doi: 10.1016/j.tet.2015.03.094 pmid: 21557494 |
|
(c) Lammens, T. M.; Le Nôtre, J.; Franssen, M. C. ChemSusChem. 2011, 4, 785.
doi: 10.1002/cssc.201100030 pmid: 21557494 |
|
(d) Dai, J. J.; Huang, Y. B.; Fang, C. ChemSusChem 2012, 5, 617.
doi: 10.1002/cssc.v5.4 pmid: 21557494 |
|
(e) Cook, M. C.; Witherell, R. D.; White, R. L. Lett. Drug Des. Discovery 2010, 7, 9.
doi: 10.2174/157018010789869361 pmid: 21557494 |
|
(f) Temelli, B.; Unaleroglu, C. Synthesis 2014, 46, 1407.
doi: 10.1055/s-00000084 pmid: 21557494 |
|
(g) Barhdadi, R.; Gal, J.; Heintz, M. Tetrahedron 1993, 49, 5091.
doi: 10.1016/S0040-4020(01)81874-3 pmid: 21557494 |
|
(h) Black, P. J.; Edwards, M. G.; Williams, J. M. Eur. J. Org. Chem. 2006,4367.
pmid: 21557494 |
|
(i) Camps, F.; Gasol, V.; Guerrero, A. Synth. Commun. 1988, 18, 445.
doi: 10.1080/00397918808064008 pmid: 21557494 |
|
(j) Boivin, J; Laurent, K. E.; Zard, S. Z. Tetrahedron 1995, 51, 2573.
doi: 10.1016/0040-4020(95)00006-T pmid: 21557494 |
|
(k) Ghiaci, M.; Sedaghat, M. E.; Kalbasi, R. J. Tetrahedron 2005, 61, 5529.
doi: 10.1016/j.tet.2005.03.087 pmid: 21557494 |
|
(l) DiBiase, S. A.; Wolak, R. P.; Dishong, D. M. J. Org. Chem. 1980, 45, 3630.
doi: 10.1021/jo01306a018 pmid: 21557494 |
|
(m) Guaragna, A.; Mauro, D. N.; Pedatella, P. J. Labelled Compd. Radiopharm. 2006, 49, 675.
doi: 10.1002/(ISSN)1099-1344 pmid: 21557494 |
|
(n) Hu, L.Z; Hussain, M. I.; Deng, Q. F.; Liu, Q.; Feng, Y.Y; Zhang, X. H.; Xiong, Y. Tetrahedron 2019, 75, 308.
doi: 10.1016/j.tet.2018.11.069 pmid: 21557494 |
|
(o) Laroche, C.; Harakat, D.; Bertus, P. Org. Biomol. Chem. 2005, 3, 3482.
doi: 10.1039/b508367b pmid: 21557494 |
|
(p) Jouanno, L. A.; Sabot, C.; Renard, P. Y. J. Org. Chem. 2012. 77, 8549.
doi: 10.1021/jo301527t pmid: 21557494 |
|
(q) Christophe, L.; Vincent, C.; Ludwig, C.; Cyril, O.; Louis, F. Eur. J. Org. Chem. 2017.2118.
pmid: 21557494 |
[1] | Yuanlin Cai, Ya Lü, Guihua Nie, Zhichao Jin, Yonggui Chi. Recent Advances in the Synthesis of Cyanides Enabled by N-Heterocyclic Carbene Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3135-3145. |
[2] | Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925. |
[3] | Haoyang Liu, Shuangshuang Sun, Xianli Ma, Yanyan Chen, Yanli Xu. Synthesis of Selenylated Spiro[indole-3,3'-quinoline] Derivatives via Visible-Light-Promoted Isocyanide Insertion [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2867-2876. |
[4] | Qiushan Gao, Meng Li, Wanqing Wu. Recent Advances in Transition Metal-Catalyzed Isocyanide Insertion Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2659-2681. |
[5] | Xianghao Luo, Yibi Xie, Nianyu Huang, Long Wang. Ugi Four-Component Reaction Based on in-situ Capture of Isocyanide and Post-Modification Tandem Reaction: One-Pot Synthesis of Nitrogen Heterocycles [J]. Chinese Journal of Organic Chemistry, 2022, 42(3): 838-846. |
[6] | Xinyi Ren, Guangzhu Wang, Xiaolei Ji, Kaiwu Dong. Synthesis of Two Types of Nitriles Both Bearing Quaternary Carbon Centers in One-Pot Manner [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 526-533. |
[7] | Yan He, Tianzi Huang, Xiaoqin Shi, Yan Chen, Qiong Wu. Recent Advances in Photocatalytic Reactions with Isocyanides [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4220-4246. |
[8] | Long Zhao, Maolin Yang, Haoran Chen, Mingwu Ding. One-Pot Three-Component Synthesis of 3,4-Dihydroquinazoline Derivatives [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3740-3746. |
[9] | Weiqing Ma, Ying Han, Jin Sun, Chaoguo Yan. Three-Component Reaction for Efficient Synthesis of Functionalized Spiro[cyclopentane-1,3'-indolines] [J]. Chinese Journal of Organic Chemistry, 2021, 41(8): 3180-3191. |
[10] | Yangyang Weng, Jingping Qu, Yifeng Chen. Palladium-Catalyzed Allylic Carbonylative Negishi Cross-Coupling Reactions with Sterically Bulky Aromatic Isocyanides [J]. Chinese Journal of Organic Chemistry, 2021, 41(5): 1949-1956. |
[11] | Hongyu Wu, Xianyong Yu, Zhong Cao. Electrochemical Multicomponent Synthesis of α-Ketoamides from α-Oxocarboxylic Acids, Isocyanides and Water [J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4712-4717. |
[12] | Fang Guannian, You Jun, Yu Yanchao, Jing Junkai, Liu Bo, Wu Wenju. Study on the Reaction of Acetone Cyanohydrin with 3,5-Dimethyl-N-α,β-unsaturated Acyl Pyrazole [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2871-2878. |
[13] | Xu Weigang, Huang Danfeng, Wang Kehu, Zhao Fangxia, Zhao Zhuanxia, Hu Yongqing, Su Yingpeng, Hu Yulai. Study on the Hydrocyanation Reaction of Trifluoromethylated Acylhydrazones [J]. Chinese Journal of Organic Chemistry, 2020, 40(4): 922-929. |
[14] | Zheng Tianjiao, Chen Xuanying, Zhu Liangliang, Wang Daolei, Zou Qi, Zeng Tao, Chen Wenbo. A New Dicyano-vinyl Modified Difurylperhydrocyclopentene Photoswitch: Fluorescent Properties, Sensing Ability and in vivo Application [J]. Chin. J. Org. Chem., 2019, 39(9): 2492-2498. |
[15] | Zhou Qiwen, Feng Xiangqing, Yang Jing, Du Haifeng. Asymmetric Transfer Hydrogenations of β-Enamine Cyanide with Chiral Ammonia Borane [J]. Chin. J. Org. Chem., 2019, 39(8): 2188-2195. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||