Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (12): 4738-4748.DOI: 10.6023/cjoc202110010 Previous Articles Next Articles
Special Issue: 有机光催化虚拟合辑; 绿色合成化学专辑; 热点论文虚拟合集
ARTICLES
袁金伟a,*(), 刘燕a, 葛元元a, 董少轩a, 宋赛依a, 杨亮茹a,*(), 肖咏梅a, 张守仁b,*(), 屈凌波c,*()
收稿日期:
2021-10-09
修回日期:
2021-11-09
发布日期:
2021-11-17
通讯作者:
袁金伟, 杨亮茹, 张守仁, 屈凌波
基金资助:
Jinwei Yuana(), Yan Liua, Yuanyuan Gea, Shaoxuan Donga, Saiyi Songa, Liangru Yanga(), Yongmei Xiaoa, Shouren Zhangb(), Lingbo Quc()
Received:
2021-10-09
Revised:
2021-11-09
Published:
2021-11-17
Contact:
Jinwei Yuan, Liangru Yang, Shouren Zhang, Lingbo Qu
Supported by:
Share
Jinwei Yuan, Yan Liu, Yuanyuan Ge, Shaoxuan Dong, Saiyi Song, Liangru Yang, Yongmei Xiao, Shouren Zhang, Lingbo Qu. Visible-Light-Induced Regioselective ortho-C—H Phosphonylation of β-Naphthols with Diarylphosphine Oxides[J]. Chinese Journal of Organic Chemistry, 2021, 41(12): 4738-4748.
Entry | Catalyst (mol%) | Oxidant (equiv.) | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | — | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 11 |
2 | Rhodamine B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 0 |
3 | Eosin Y (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
4 | Eosin B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
5 | Fluorescein (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 65 |
6 | Ruthenium (0.1)c | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
7 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 80 |
8 | Fluorescein (0.15) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 45 |
9 | Fluorescein (0.2) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 40 |
10 | Fluorescein (0.05) | (NH4)2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 70 |
11 | Fluorescein (0.05) | TBPB (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 15 |
12 | Fluorescein (0.05) | DTBP (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 21 |
13 | Fluorescein (0.05) | BPO (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 26 |
14 | Fluorescein (0.05) | K2S2O8 (1.0) | DMF-H2O (V∶V=1∶1) | 16 | 48 |
15 | Fluorescein (0.05) | K2S2O8 (1.5) | DMF-H2O (V∶V=1∶1) | 16 | 67 |
16 | Fluorescein (0.05) | K2S2O8 (2.5) | DMF-H2O (V∶V=1∶1) | 16 | 78 |
17 | Fluorescein (0.05) | K2S2O8 (2.0) | DMSO | 16 | 12 |
18 | Fluorescein (0.05) | K2S2O8 (2.0) | MeCN | 16 | 25 |
19 | Fluorescein (0.05) | K2S2O8 (2.0) | DCE | 16 | 20 |
20 | Fluorescein (0.05) | K2S2O8 (2.0) | Dioxane | 16 | 34 |
21c | Fluorescein (0.05) | K2S2O8 (2.0) | DMF | 16 | 67 |
22d | Fluorescein (0.05) | K2S2O8 (2.0) | H2O | 16 | 0 |
23 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 2 | 50 |
24 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 4 | 71 |
25 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 83 |
26 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 8 | 78 |
27d | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 85 |
28e | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 0 |
29f | Fluorescein (0.05) | — | DMF-H2O (V∶V=1∶1) | 6 | 0 |
Entry | Catalyst (mol%) | Oxidant (equiv.) | Solvent | Time/h | Yieldb/% |
---|---|---|---|---|---|
1 | — | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 11 |
2 | Rhodamine B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 0 |
3 | Eosin Y (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
4 | Eosin B (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
5 | Fluorescein (0.1) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 65 |
6 | Ruthenium (0.1)c | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | Trace |
7 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 80 |
8 | Fluorescein (0.15) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 45 |
9 | Fluorescein (0.2) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 40 |
10 | Fluorescein (0.05) | (NH4)2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 70 |
11 | Fluorescein (0.05) | TBPB (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 15 |
12 | Fluorescein (0.05) | DTBP (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 21 |
13 | Fluorescein (0.05) | BPO (2.0) | DMF-H2O (V∶V=1∶1) | 16 | 26 |
14 | Fluorescein (0.05) | K2S2O8 (1.0) | DMF-H2O (V∶V=1∶1) | 16 | 48 |
15 | Fluorescein (0.05) | K2S2O8 (1.5) | DMF-H2O (V∶V=1∶1) | 16 | 67 |
16 | Fluorescein (0.05) | K2S2O8 (2.5) | DMF-H2O (V∶V=1∶1) | 16 | 78 |
17 | Fluorescein (0.05) | K2S2O8 (2.0) | DMSO | 16 | 12 |
18 | Fluorescein (0.05) | K2S2O8 (2.0) | MeCN | 16 | 25 |
19 | Fluorescein (0.05) | K2S2O8 (2.0) | DCE | 16 | 20 |
20 | Fluorescein (0.05) | K2S2O8 (2.0) | Dioxane | 16 | 34 |
21c | Fluorescein (0.05) | K2S2O8 (2.0) | DMF | 16 | 67 |
22d | Fluorescein (0.05) | K2S2O8 (2.0) | H2O | 16 | 0 |
23 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 2 | 50 |
24 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 4 | 71 |
25 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 83 |
26 | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 8 | 78 |
27d | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 85 |
28e | Fluorescein (0.05) | K2S2O8 (2.0) | DMF-H2O (V∶V=1∶1) | 6 | 0 |
29f | Fluorescein (0.05) | — | DMF-H2O (V∶V=1∶1) | 6 | 0 |
[1] |
(a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893.
doi: 10.1021/cr020033s pmid: 18269226 |
(b) Vasilev, N.; Elfahmi, R. B.; Kayser, O.; Momekov, G.; Konstantinov, S.; Ionkova, I. J. Nat. Prod. 2006, 69, 1014.
doi: 10.1021/np060022k pmid: 18269226 |
|
(c) Neugebauer, R. C.; Uchiechowska, U.; Meier, R.; Hruby, H.; Valkov, V.; Verdin, E.; Sippl, W.; Jung, M. J. Med. Chem. 2008, 51, 1203.
doi: 10.1021/jm700972e pmid: 18269226 |
|
(d) Roche, S. P.; Porco Jr, J. A. Angew. Chem.,Int. Ed. 2011, 50, 4068.
doi: 10.1002/anie.v50.18 pmid: 18269226 |
|
(e) Ogata, T.; Yoshida, T.; Shimizu, M.; Tanaka, M.; Fukuhara, C.; Ishii, J.; Nishiuchi, A.; Inamoto, K.; Kimachi, T. Tetrahedron 2016, 72, 1423.
doi: 10.1016/j.tet.2016.01.040 pmid: 18269226 |
|
[2] |
(a) Shen, A. Y.; Tsai, C. T.; Chen, C. L. Eur. J. Med. Chem. 1999, 34, 877.
doi: 10.1016/S0223-5234(99)00204-4 |
(b) Huang, M. H.; Wa, S. N.; Wang, J. P.; Lin, C. H.; Lu, S. I.; Lian, L. F.; Shen, A. Y. Drug Dev. Res. 2003, 60, 261.
doi: 10.1002/(ISSN)1098-2299 |
|
(c) Chopade, H. N.; Meshram, J. S.; Pagadala, R.; Mungole, A. J. Int. J. Chem. Tech. Res. 2010, 2, 1823.
|
|
(d) Das, B.; Reddy, C. R.; Kashanna, J.; Mamidy, S. K.; G. Kumar, C. Med. Chem. Res. 2012, 21, 3321.
doi: 10.1007/s00044-011-9884-x |
|
[3] |
(a) Li, S.; Yang, X.; Wang, Y.; Zhou, H.; Zhang, B.; Huang, G.; Zhang, Y.; Li, Y. Adv. Synth. Catal. 2018, 360, 4452.
doi: 10.1002/adsc.v360.22 |
(b) Chang, C. H.; Sathishkumar, N.; Liao, Y. T.; Chen, H. T.; Han, J. L. Adv. Synth. Catal. 2020, 362, 903.
doi: 10.1002/adsc.v362.4 |
|
(c) Zhang, C.; Cheng, Y.; Li, F.; Luan, Y.; Li, P.; Li, W. Adv. Synth. Catal. 2020, 362, 1286.
doi: 10.1002/adsc.v362.6 |
|
(d) Wang, C. J.; Yang, Q. Q.; Wang, M. X.; Shang, Y. H.; Tong, X. Y.; Deng, Y. H.; Shao, Z. Org. Chem. Front. 2020, 7, 609.
doi: 10.1039/C9QO01391A |
|
(e) Wu, S.; Dong, J.; Zhou, D.; Wang, W.; Liu, L.; Zhou, Y. J. Org. Chem. 2020, 85, 14307.
doi: 10.1021/acs.joc.9b03028 |
|
[4] |
(a) Lee, H.; Yi, C. S. Eur. J. Org. Chem. 2015, 2015, 1899.
doi: 10.1002/ejoc.v2015.9 |
(b) Paul, V.; Sudalai, A.; Daniel, T.; Srinivasan, K. V. Tetrahedron Lett. 1994, 35, 2601.
|
|
[5] |
(a) Paniak, T. J.; Kozlowski, M. C. Org. Lett. 2020, 22, 1765.
doi: 10.1021/acs.orglett.0c00046 pmid: 32108765 |
(b) Jurrat, M.; Maggi, L.; Lewis, W; Ball, L. T. Nat. Chem. 2020, 12, 260.
doi: 10.1038/s41557-020-0425-4 pmid: 32108765 |
|
[6] |
(a) Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. J. Green Chem. 2016, 18, 1538.
doi: 10.1039/C5GC02292D |
(b) Zhou, K.; Chen, M.; Yao, L.; Wu, J. Org. Chem. Front. 2018, 5, 371.
doi: 10.1039/C7QO00811B |
|
[7] |
(a) Jia, L.; Tang, Q.; Luo, M.; Zeng, X. J. Org. Chem. 2018, 83, 508.
|
(b) Barton, D. H. R.; Greneur, S. L.; Motherwell, W. B. Tetrahedron Lett. 1983, 24, 160.
|
|
(c) Tang, Q.; Zhang, C.; Luo, M. J. Am. Chem. Soc. 2008, 130, 5840.
doi: 10.1021/ja711153b |
|
[8] |
(a) Silva, L. T.; Azeredo, J. B.; Saba, S.; Rafique, J.; Bortoluzzi, A. J.; Braga, A. L. Eur. J. Org. Chem. 2017, 2017, 4740.
doi: 10.1002/ejoc.v2017.32 pmid: 29313345 |
(b) Lima, D. B.; Santos, P. H. V.; Fiori, P.; Badshah, G.; Luz, E. Q.; Seckler, D.; Rampon, D. S. ChemistrySelect 2019, 4, 13558.
doi: 10.1002/slct.v4.46 pmid: 29313345 |
|
(c) Ghosh, T.; Mukherjee, N.; Ranu, B. C. ACS Omega 2018, 3, 17540.
doi: 10.1021/acsomega.8b02740 pmid: 29313345 |
|
(d) Meirinho, A. G.; Pereira, V. F.; Martins, G. M.; Saba, S.; Rafique, J.; Braga, A. L.; Mendes, S. R. Eur. J. Org. Chem. 2019, 2019, 6465.
doi: 10.1002/ejoc.201900992 pmid: 29313345 |
|
(e) Huang, X.; Chen, Y.; Zhen, S.; Song, L.; Gao, M.; Zhang, P.; Li, H.; Yuan, B.; Yang, G. J. Org. Chem. 2018, 83, 7331.
doi: 10.1021/acs.joc.7b02718 pmid: 29313345 |
|
(f) Parumala, S. K. R.; Peddinti, R. K. Green Chem. 2015, 17, 4068.
doi: 10.1039/C5GC00403A pmid: 29313345 |
|
(g) Xiao, F.; Chen, S.; Tian, J.; Huang, H.; Liu, Y.; Deng, G. J. Green Chem. 2016, 18, 1538.
doi: 10.1039/C5GC02292D pmid: 29313345 |
|
(h) Wang, D.; Zhang, R.; Lin, S.; Yan, Z.; Guo, S. RSC Adv. 2015, 5, 10803.
pmid: 29313345 |
|
(i) Xu, Z. B.; Lu, G. P.; Cai, C. Org. Biomol. Chem. 2017, 15, 2804.
doi: 10.1039/C6OB02823C pmid: 29313345 |
|
(j) Kang, X.; Yan, R.; Yu, G.; Pang, X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem. 2014, 79, 10605.
doi: 10.1021/jo501778h pmid: 29313345 |
|
(k) Khaef, S.; Rostami, A.; Khakyzadeh, V.; Zolfigol, M. A.; Taherpour, A. A.; Yarie, M. Mol. Catal. 2020, 484, 110772.
pmid: 29313345 |
|
[9] |
(a) Georage, A.; Veis, A. Chem. Rev. 2008, 108, 4670.
doi: 10.1021/cr0782729 pmid: 21250669 |
(b) Zhao, D.; Wang, R. Chem. Soc. Rev. 2012, 41, 2095.
doi: 10.1039/C1CS15247E pmid: 21250669 |
|
(c) Fernández-Pérez, H.; Etayo, P.; Panossian, A.; Vidal-Ferran, A. Chem. Rev. 2011, 111, 2119.
doi: 10.1021/cr100244e pmid: 21250669 |
|
[10] |
(a) Falk, A.; Göderz, A. L.; Schmalz, H. G. Angew. Chem., Int. Ed. 2013, 52, 1576.
doi: 10.1002/anie.201208082 pmid: 23231748 |
(b) Robert, T.; Velder, J.; Schmalz, H. G. Angew. Chem., Int. Ed. 2008, 47, 7718.
doi: 10.1002/anie.v47:40 pmid: 23231748 |
|
(c) Rubio, M.; Suárez, A.; Álvarez, E.; Pizzano, A. Chem. Commun. 2005, 628.
pmid: 23231748 |
|
(d) Kleman, P.; González-Liste, P. J.; García-Garrido, S. E.; Cadierno, V.; Pizzano, A. ACS Catal. 2014, 4, 4398.
doi: 10.1021/cs501402z pmid: 23231748 |
|
(e) Takahiro, N.; Yuko, M.; Tamio, H. Org. Lett. 2011, 13, 3674.
doi: 10.1021/ol2013236 pmid: 23231748 |
|
(f) Bakewell, C.; Cao, T. P. A.; Long, N.; Le Goff, X. F.; Auffrant, A.; Williams, C. K. J. Am. Chem. Soc. 2012, 134, 20577.
doi: 10.1021/ja310003v pmid: 23231748 |
|
(g) Liu, J. Y.; Liu, S. R.; Li, B. X.; Li, Y. G.; Li, Y. S. Organometallics 2011, 30, 4052.
doi: 10.1021/om200317x pmid: 23231748 |
|
(h) Han, C.; Zhu, L.; Zhao, F.; Zhang, Z.; Wang, J.; Deng, Z.; Xu, H.; Li, J.; Ma, D.; Yan, P. Chem. Commun. 2014, 50, 2670.
doi: 10.1039/C3CC49020C pmid: 23231748 |
|
(i) Han, C.; Zhao, F.; Zhang, Z.; Zhu, L.; Xu, H.; Li, J.; Ma, D.; Yan, P. Chem. Mater. 2013, 25, 4966.
doi: 10.1021/cm403160p pmid: 23231748 |
|
(j) Shen, R.; Zhang, M.; Xiao, J.; Dong, C.; Han, L. B. Green Chem. 2018, 20, 5111.
doi: 10.1039/C8GC02918K pmid: 23231748 |
|
[11] |
(a) Xie, J.; Li, H.; Xue, Q.; Cheng, Y.; Zhu, C. Adv. Synth. Catal. 2012, 354, 1646.
doi: 10.1002/adsc.201200360 |
(b) Vassilion, S.; Weglarz-Tomczak, E.; Berlicki, Ł.; Pawelczak, M.; Nocek, B.; Mulligan, R.; Joachimiak, A.; Mucha, A. J. Med. Chem. 2014, 57, 8140.
doi: 10.1021/jm501071f |
|
(c) Mucha, A.; Kafarski, P.; Berlicki, Ł. J. Med. Chem. 2011, 54, 595.
|
|
[12] |
(a) Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 1269.
doi: 10.3762/bjoc.9.143 pmid: 23843922 |
(b) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981.
doi: 10.1021/cr2002646 pmid: 23843922 |
|
[13] |
(a) Hirao, T.; Masunaga, T.; Ohshiro, Y.; Agawa, T. Tetrahedron Lett. 1980, 21, 359.
doi: 10.1016/S0040-4039(01)85472-1 |
(b) Montchamp, J. L.; Dumond, Y. R. J. Am. Chem. Soc. 2001, 123, 510.
doi: 10.1021/ja005721c |
|
[14] |
(a) Shaikh, R. S.; Ghosh, I.; König, B. Chem.-Eur. J. 2017, 23, 12120.
doi: 10.1002/chem.201701283 |
(b) Xu, K.; Yang, F.; Zhang, G.; Wu, Y. Green Chem. 2013, 15, 1055.
doi: 10.1039/c3gc00030c |
|
(c) Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Org. Lett. 2011, 13, 3478.
doi: 10.1021/ol201141m |
|
(d) Feng, C. G.; Ye, M.; Xiao, K. J.; Li, S.; Yu, J. Q. J. Am. Chem. Soc. 2013, 135, 932.
|
|
[15] |
Yang, J.; Chen, T.; Han, L. B. J. Am. Chem. Soc. 2015, 137, 1782.
doi: 10.1021/ja512498u pmid: 25629169 |
[16] |
Zhao, Y. L.; Wu, G. J.; Han, F. S. Chem. Commun. 2012, 48, 5868.
doi: 10.1039/c2cc31718d |
[17] |
Dhawan, B.; Redmore, D. J. Org. Chem. 1991, 56, 833.
doi: 10.1021/jo00002a060 |
[18] |
Xiong, B.; Li, M.; Liu, Y.; Zhou, Y.; Zhao, C.; Goto, M.; Yin, S. F.; Han, L. B. Adv. Synth. Catal. 2014, 356, 781.
doi: 10.1002/adsc.v356.4 |
[19] |
(a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Commun. 2010, 2, 527.
doi: 10.1038/ncomms1531 pmid: 34253729 |
(b) Sun, C. L.; Shi, Z. J. Chem. Rev. 2014, 114, 921.
pmid: 34253729 |
|
(c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
doi: 10.1126/science.1239176 pmid: 34253729 |
|
(d) Jin, J.; MacMillan, D. W. C. Angew. Chem., Int. Ed. 2015, 54, 1565.
doi: 10.1002/anie.201410432 pmid: 34253729 |
|
(e) Zoller, J.; Fabry, D. C.; Rueping, M. ACS Catal. 2015, 5, 390.
pmid: 34253729 |
|
(f) Li, X.; Gu, X.; Li, P. ACS Catal. 2014, 4, 1897.
doi: 10.1021/cs5005129 pmid: 34253729 |
|
(g) Xiao, T.; Li, L.; Lin, G.; Mao, Z.; Zhou, L. Org. Lett. 2014, 16, 4232.
doi: 10.1021/ol501933h pmid: 34253729 |
|
(h) Yang, W.; Yang, S.; Li, P.; Wang, L. Chem. Commun. 2015, 51, 7520.
doi: 10.1039/C5CC00878F pmid: 34253729 |
|
(i) Zhong, J. J.; Meng, Q. Y.; Liu, B.; Li, X. B.; Gao, X. W.; Lei, T.; Wu, C. J.; Li, Z. J.; Tung, C. H.; Wu, L. Z. Org. Lett. 2014, 16, 1988.
doi: 10.1021/ol500534w pmid: 34253729 |
|
(j) Ishii, T.; Kakeno, Y.; Nagao, K.; Ohmiya, H. J. Am. Chem. Soc. 2019, 141, 3854.
doi: 10.1021/jacs.9b00880 pmid: 34253729 |
|
(k) Hell, S. M.; Meyer, C. F.; Misale, A.; Sap, J. B. I.; Christensen, K. E.; Willis, M. C.; Trabanco, A. A.; Gouverneur, V. Angew. Chem.,Int. Ed. 2020, 132, 11717.
doi: 10.1002/ange.v132.28 pmid: 34253729 |
|
(l) Chen, F.; Shao, Y.; Li, M.; Yang, C.; Su, S. J.; Jiang, H.; Ke, Z.; Zeng, W. Nat. Commun. 2021, 12, 4261.
doi: 10.1038/s41467-021-24559-x pmid: 34253729 |
|
[20] |
(a) Li, C. X.; Tu, D. S.; Yao, R.; Yan, H.; Lu, C. S. Org. Lett. 2016, 18, 4928.
doi: 10.1021/acs.orglett.6b02413 |
(b) Wang, C. H.; Li, Y. H.; Yang, S. D. Org. Lett. 2018, 20, 2382.
doi: 10.1021/acs.orglett.8b00722 |
|
(c) Peng, P.; Lu, Q.; Peng, L.; Liu, C.; Wang, G.; Lei, A. Chem. Commun. 2016, 52, 12338.
doi: 10.1039/C6CC06881B |
|
[21] |
Luo, K.; Chen, Y. Z.; Yang, W. C.; Zhu, J.; Wu, L. Org. Lett. 2016, 18, 452.
doi: 10.1021/acs.orglett.5b03497 |
[22] |
Singsardar, M.; Dey, A.; Sarkar, R.; Hajra, A. J. Org. Chem. 2018, 83, 12694.
doi: 10.1021/acs.joc.8b02019 pmid: 30246531 |
[23] |
(a) Mai, W. P.; Yuan, J. W.; Zhu, J. L.; Li, Q. Q.; Yang, L. R.; Xiao, Y. M.; Mao, P.; Qu, L. B. ChemistrySelect 2019, 4, 11066.
doi: 10.1002/slct.v4.37 |
(b) Yuan, J. W.; Li, Y. Z.; Mai, W. P.; Yang, L. R.; Qu, L. B. Tetrahedron 2016, 72, 3084.
doi: 10.1016/j.tet.2016.04.034 |
|
(c) Yuan, J. W.; Yang, L. R.; Mao, P.; Qu, L. B. RSC Adv. 2016, 6, 87058.
doi: 10.1039/C6RA19002B |
|
[24] |
(a) Shi, Y.; Chen, R.; Guo, K.; Meng, F.; Cao, S.; Gu, C.; Zhu, Y. Tetrahedron Lett. 2018, 59, 2062.
doi: 10.1016/j.tetlet.2018.04.040 |
(b) Luo, K.; Yang, W. C.; Wu, L. Asian J. Org. Chem. 2017, 6, 350.
doi: 10.1002/ajoc.v6.4 |
|
(c) Yoo, W. J.; Kobayashi, S. Green Chem. 2013, 15, 1844.
doi: 10.1039/c3gc40482j |
|
(d) Quint, V.; Morlet-Savary, F.; Lohier, J. F.; Lalevée, J.; Gaumont, A. C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436.
doi: 10.1021/jacs.6b04069 |
|
(e) Liu, D.; Chen, J. Q.; Wang, X. Z.; Xu, P. F. Adv. Synth. Catal. 2017, 359, 2773.
doi: 10.1002/adsc.v359.16 |
|
(f) Li, Z.; Song, H.; Guo, R.; Zuo, M.; Hou, C.; Sun, S.; He, X.; Sun, Z.; Chu, W. Green Chem. 2019, 21, 3602.
doi: 10.1039/C9GC01359H |
|
[25] |
(a) Liu, Y.; Chen, X. L.; Li, X. Y.; Zhu, S. S.; Li, S. J.; Song, Y.; Qu, B. L.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
doi: 10.1021/jacs.0c11138 |
(b) Xie, P.; Fan, J.; Liu, Y.; Wo, X.; Fu, W.; Loh, T. P. Org. Lett. 2018, 20, 3341.
doi: 10.1021/acs.orglett.8b01173 |
|
(c) Vil', V. A.; Krylov, I. B.; Terent’ev, A. O. Sci. China Chem. 2021, 64, 681.
doi: 10.1007/s11426-021-9971-9 |
[1] | Hong'en Tong, Hongyu Guo, Rong Zhou. Progress on Visible-Light Promoted Addition Reactions of Inert C—H Bonds to Carbonyls [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 54-69. |
[2] | Fen Huang, Weiwei Luo, Jun Zhou. Research Progress of Polychloroalkylation Based on C—H Bond Cleavage [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2368-2390. |
[3] | Jinxiao Zhao, Tonghui Wei, Sen Ke, Yi Li. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1102-1114. |
[4] | Zhaoming Hu, Jihong Wu, Jingjing Wu, Fanhong Wu. Research Progress on Direct Trifluoromethylselenylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 36-56. |
[5] | Zhentao Pan, Tong Liu, Yongmin Ma, Jianbo Yan, Ya-Jun Wang. Construction of Quinazolin(thi)ones by Brønsted Acid/Visible-Light Photoredox Relay Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(9): 2823-2831. |
[6] | Shiwei Yu, Zhaohua Chen, Qi Chen, Shuting Lin, Jinping He, Guanshen Tao, Zhaoyang Wang. Research Progress in Synthesis and Application of Thiosulfonates [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2322-2330. |
[7] | Lizhi Zhang, Yongjian Liao, Ning Chen, Lei Huang, Min Zhou. Cyclization and Coupling Reactions Promoted by Potassium tert-Butoxide [J]. Chinese Journal of Organic Chemistry, 2022, 42(7): 1950-1959. |
[8] | Yadong Li, Pengju Wu, Zhiyong Yang. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1770-1777. |
[9] | Baitong Yue, Xinxin Wu, Chen Zhu. Recent Advances in Vinyl Radical-Mediated Hydrogen Atom Transfer [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 458-470. |
[10] | Yamin Sun, Xiyong Li, Jinwei Yuan, Jialin Yu, Shuainan Liu. CuI-Catalyzed Regioselective Synthesis of 3-Arylcoumarins with Arylamines under Mild Conditions [J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 631-640. |
[11] | Hao Xu, Jie Zhang, Junze Zuo, Fengxiao Wang, Jian Lü, Xu Hun, Daoshan Yang. Recent Advances in Visible-Light-Catalyzed C—C Bonds and C—Heteroatom Bonds Formation Using Sulfonium Salts [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4037-4059. |
[12] | Qian Xiao, Qing-Xiao Tong, Jian-Ji Zhong. Recent Progress on the Synthesis of Benzazepine Derivatives via Radical Cascade Cyclization Reactions [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3979-3994. |
[13] | Yaohui Xu, Zhen Wu, Xinxin Wu, Chen Zhu. Transition-Metal Free Radical-Mediated C—H Bond Alkynylation and Allylation of Ethers, Aldehydes and Amides [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4340-4349. |
[14] | Pan-Pan Gao, Wen-Jing Xiao, Jia-Rong Chen. Recent Progresses in Visible-Light-Driven Alkene Synthesis [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 3923-3943. |
[15] | Mengqi Zhang, Guangming Nan, Xiaohui Zhao, Wei Wei. Visible-Light-Mediated C3-H Acetalation of Quinoxalin-2(1H)-ones [J]. Chinese Journal of Organic Chemistry, 2022, 42(12): 4315-4322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||