Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (4): 1566-1573.DOI: 10.6023/cjoc202208035 Previous Articles Next Articles
ARTICLES
梁陆祺, 奚娟, 姜若楠, 杨艺, 孙丰钢, 张立志*(), 李新进, 刘会*()
收稿日期:
2022-08-25
修回日期:
2022-10-06
发布日期:
2022-11-15
通讯作者:
张立志, 刘会
基金资助:
Luqi Liang, Juan Xi, Ruonan Jiang, Yi Yang, Fenggang Sun, Lizhi Zhang(), Xinjin Li, Hui Liu()
Received:
2022-08-25
Revised:
2022-10-06
Published:
2022-11-15
Contact:
Lizhi Zhang, Hui Liu
Supported by:
Share
Luqi Liang, Juan Xi, Ruonan Jiang, Yi Yang, Fenggang Sun, Lizhi Zhang, Xinjin Li, Hui Liu. Ni-Catalyzed Aryl Thioester Synthesis via Thioester Transfer Reaction[J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1566-1573.
Entry | Ni catalyst | Ligand | Solvent | Yielda/% |
---|---|---|---|---|
1 | NiBr2(PPh3)2 | L1 | Dioxane | NR |
2 | NiBr2(PPh3)2 | L1 | MeCN | NR |
3 | NiBr2(PPh3)2 | L1 | NMP | 44 |
4 | NiBr2(PPh3)2 | L1 | DMSO | 56 |
5 | NiBr2(PPh3)2 | L1 | DMF | 25 |
6 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 77 |
7 | NiBr2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 61 |
8 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 68 |
9 | NiCl2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 69 |
10 | NiBr2(PPh3)2 | L2 | NMP/DMSO (V∶V=1∶1) | 26 |
11 | NiBr2(PPh3)2 | L3 | NMP/DMSO (V∶V=1∶1) | 59 |
12 | NiBr2(PPh3)2 | L4 | NMP/DMSO (V∶V=1∶1) | 66 |
13 | NiBr2(PPh3)2 | DPPE | NMP/DMSO (V∶V=1∶1) | NR |
14 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 34b |
Entry | Ni catalyst | Ligand | Solvent | Yielda/% |
---|---|---|---|---|
1 | NiBr2(PPh3)2 | L1 | Dioxane | NR |
2 | NiBr2(PPh3)2 | L1 | MeCN | NR |
3 | NiBr2(PPh3)2 | L1 | NMP | 44 |
4 | NiBr2(PPh3)2 | L1 | DMSO | 56 |
5 | NiBr2(PPh3)2 | L1 | DMF | 25 |
6 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 77 |
7 | NiBr2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 61 |
8 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 68 |
9 | NiCl2•DME | L1 | NMP/DMSO (V∶V=1∶1) | 69 |
10 | NiBr2(PPh3)2 | L2 | NMP/DMSO (V∶V=1∶1) | 26 |
11 | NiBr2(PPh3)2 | L3 | NMP/DMSO (V∶V=1∶1) | 59 |
12 | NiBr2(PPh3)2 | L4 | NMP/DMSO (V∶V=1∶1) | 66 |
13 | NiBr2(PPh3)2 | DPPE | NMP/DMSO (V∶V=1∶1) | NR |
14 | NiBr2(PPh3)2 | L1 | NMP/DMSO (V∶V=1∶1) | 34b |
[1] |
(a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122, 11260.
doi: 10.1021/ja005613q pmid: 18367231 |
(b) Tokuyama, H.; Yokoshima, S.; Lin, S. C.; Li, L. P.; Fukuyama, T. Synthesis 2002, 1121.
pmid: 18367231 |
|
(c) Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042.
doi: 10.1039/c3cs60041f pmid: 18367231 |
|
(d) Dénès, F.; Schiesser, C. H.; Renaud, P. ; Chem. Soc. Rev. 2013, 42, 7900.
doi: 10.1039/c3cs60143a pmid: 18367231 |
|
(e) Smietana, M.; Clayette, P.; Mialocq, P.; Vasseur, J.; Oiry, J. Bioorg. Chem. 2008, 36, 133.
doi: 10.1016/j.bioorg.2008.02.001 pmid: 18367231 |
|
(f) Kumar, K. S. A.; Spasser, L.; Moyal, T.; Ohayon, S.; Brik, A. Angew. Chem., Int. Ed. 2011, 50, 6137.
doi: 10.1002/anie.v50.27 pmid: 18367231 |
|
[2] |
Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, 4th ed., John Wiley & Sons, New Jersey, 2007.
|
[3] |
(a) Kazemi, M.; Shiri, L. J. Sulfur Chem. 2015, 36, 613.
doi: 10.1080/17415993.2015.1075023 |
(b) Zheng, T. C.; Burkart, M.; Richardson, D. E. Tetrahedron Lett. 1999, 40, 603.
doi: 10.1016/S0040-4039(98)02545-3 |
|
(c) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. 1978, 17, 522.
doi: 10.1002/(ISSN)1521-3773 |
|
(d) Zeiler, E.; Korotkov, V. S.; Lorenz-Baath, K.; Böttcher, T.; Sieber, S. A. Med. Chem. 2012, 20, 583.
doi: 10.1021/jm00214a027 |
|
[4] |
(a) Xiao, W. J.; Alper, H. J. Org. Chem. 1997, 62, 3422.
doi: 10.1021/jo970126n pmid: 11559167 |
(b) Xiao, W. J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1998, 63, 2609.
doi: 10.1021/jo972121w pmid: 11559167 |
|
(c) Xiao, W. J.; Alper, H. J. Org. Chem. 1998, 63, 7939.
doi: 10.1021/jo9812328 pmid: 11559167 |
|
(d) Xiao, W. J.; Vasapollo, G.; Alper, H. J. Org. Chem. 1999, 64, 2080.
doi: 10.1021/jo9824246 pmid: 11559167 |
|
(e) Xiao, W. J.; Alper, H. J. Org. Chem. 1999, 64, 9646.
doi: 10.1021/jo9913098 pmid: 11559167 |
|
(f) Xiao, W. J.; Vasapollo, G.; Alper, H. J. Org. Chem. 2000, 65, 4138.
pmid: 11559167 |
|
(g) Xiao, W. J.; Alper, H. J. Org. Chem. 2001, 66, 6229.
pmid: 11559167 |
|
(h) Xiao, W. J.; Alper, H. J. Org. Chem. 2005, 70, 1802.
doi: 10.1021/jo047938l pmid: 11559167 |
|
(i) Cao, H.; Xiao, W. J.; Alper, H. Adv. Synth. Catal. 2006, 348, 1807.
doi: 10.1002/(ISSN)1615-4169 pmid: 11559167 |
|
(j) Li, C. F.; Xiao, W. J.; Alper, H. J. Org. Chem. 2009, 74, 888.
doi: 10.1021/jo801725j pmid: 11559167 |
|
(k) Zeng, F.; Alper, H. Org. Lett. 2011, 13, 2868.
doi: 10.1021/ol200880m pmid: 11559167 |
|
[5] |
(a) Hu, Y. H.; Liu, J.; Lu, Z. X.; Luo, X. C.; Zhang, H.; Lan, Y.; Lei, A. J. Am. Chem. Soc. 2010, 132, 3153.
doi: 10.1021/ja909962f pmid: 23383647 |
(b) Islam, S. M.; Molla, R. A.; Roy, A. S.; Ghosh, K. RSC Adv. 2014, 4, 26181.
doi: 10.1039/C4RA03338H pmid: 23383647 |
|
(c) Fukuoka, S. Ind. Eng. Chem. Res. 2016, 55, 4830.
doi: 10.1021/acs.iecr.6b00606 pmid: 23383647 |
|
(d) Martinelli, D. A.; Freckmann, M. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2008, 73, 7102.
doi: 10.1021/jo801279r pmid: 23383647 |
|
(e) Burhardt, M. N.; Taaning, R. H.; Skrydstrup, T. Org. Lett. 2013, 15, 948.
doi: 10.1021/ol400138m pmid: 23383647 |
|
(f) Torres, G. M.; Liu, Y.; Arndtsen, A. Science 2020, 368, 318.
doi: 10.1126/science.aba5901 pmid: 23383647 |
|
(g) Ai, H. J.; Rabeah, J.; Brückner, A.; Wu, X. F. Chem. Commun. 2021, 57, 1466.
doi: 10.1039/D0CC07578G pmid: 23383647 |
|
[6] |
(a) Li, Y.; Bao, G.; Wu, X. F. Chem. Sci. 2020, 11, 2187.
doi: 10.1039/C9SC05532K |
(b) Tian, Q. Q.; Sun, R. J.; Li, Y. H. Org. Biomol. Chem. 2022, 20, 1186.
doi: 10.1039/D2OB00008C |
|
[7] |
Kim, M.; Yu, S.; Kim, J. G.; Lee, S. Org. Chem. Front. 2018, 5, 2447.
doi: 10.1039/C8QO00466H |
[8] |
For reviews, See: (a) Morimoto, T.; Kakiuchi,, K. 2004, 43, 5580.
|
(b) Konishi, H.; Manabe, K. Synlett 2014, 25, 1971.
doi: 10.1055/s-00000083 |
|
For selected examples, see.
|
|
(c) Ueda, T.; Konishi, H.; Manabe, K. Org. Lett. 2012, 14, 3100.
doi: 10.1021/ol301192s |
|
(d) Park, H. S.; Kim, D. S.; Jun, C. H. ACS Catal. 2015, 5, 397.
doi: 10.1021/cs501778q |
|
[9] |
For reviews on a functional group transfer reaction, see: (a) Bhawal, B. N.; Morandi,, B. Angew. Chem., Int. Ed. 2019, 58, 10074.
doi: 10.1002/anie.v58.30 pmid: 29215288 |
(b) Boehm, P.; Morandi, B. Chimia 2020, 74, 724.
doi: 10.2533/chimia.2020.724 pmid: 29215288 |
|
Conceptually similar transfer reactions were also known.
pmid: 29215288 |
|
(c) Jun, C. H.; Lee, H. J. Am. Chem. Soc. 1999, 121, 880.
doi: 10.1021/ja983197s pmid: 29215288 |
|
(d) Arisawa, M.; Igarashi, Y.; Kobayashi, H.; Yamada, T.; Bando, K.; Ichikawa, T.; Yamaguchi, M. Tetrahedron 2011, 67, 7846.
doi: 10.1016/j.tet.2011.07.031 pmid: 29215288 |
|
(e) Murphy, S. K.; Park, J. W.; Bhawal, B. N.; Morandi, B. Chem.-Eur. J. 2017, 23, 12004.
doi: 10.1002/chem.201605325 pmid: 29215288 |
|
(f) Cruz, F. A.; Dong, V. M. Science 2015, 347, 56.
doi: 10.1126/science.1261232 pmid: 29215288 |
|
(g) Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832.
doi: 10.1126/science.aae0427 pmid: 29215288 |
|
(f) Fan, C.; Lv, X. Y.; Xiao, L. J.; Xie, J. H.; Zhou, Q. L. J. Am. Chem. Soc. 2019, 141, 2889.
doi: 10.1021/jacs.8b13251 pmid: 29215288 |
|
(h) Kanda, T.; Naraoka, A.; Naka, H. J. Am. Chem. Soc. 2019, 141, 825.
doi: 10.1021/jacs.8b12877 pmid: 29215288 |
|
(i) Isshiki, R.; Kurosawa, M. B.; Muto, K.; Yamaguchi, J. J. Am. Chem. Soc. 2021, 143, 10333.
doi: 10.1021/jacs.1c04215 pmid: 29215288 |
|
(j) Cao, H.; Liu, X.; Bie, F.; Shi, Y.; Han, Y.; Yan, P.; Szostak, M.; Liu, C. J. Org. Chem. 2021, 86, 10829.
doi: 10.1021/acs.joc.1c01117 pmid: 29215288 |
|
(k) Ichiishi, N.; Malapit, C. A.; Woźniak, L.; Sanford, M. S. Org. Lett. 2018, 20, 44.
doi: 10.1021/acs.orglett.7b03305 pmid: 29215288 |
|
(l) Kang, B.; Hong, S. H. Chem. Sci. 2017, 8, 6613.
doi: 10.1039/C7SC02516E pmid: 29215288 |
|
(m) Liu, C.; Szostak, M. Chem. Commun. 2018, 54, 2130.
doi: 10.1039/C8CC00271A pmid: 29215288 |
|
[10] |
(a) Lee, Y. H.; Morandi, B. Nat. Chem. 2018, 10, 1016.
doi: 10.1038/s41557-018-0078-8 |
(b) De La Higuera Macias, M.; Arndtsen, B. A. J. Am. Chem. Soc. 2018, 140, 10140.
doi: 10.1021/jacs.8b06605 |
|
[11] |
Isshiki, R.; Inayama, N.; Muto, K.. Yamaguchi, J. ACS Catal. 2020, 10, 3490.
|
[12] |
Wu, X.; Li, J.; Xia, S.; Zhu, C.; Xie, J. J. Org. Chem. 2022, 87, 10003.
doi: 10.1021/acs.joc.2c00979 |
[13] |
(a) Mann, G.; Baranano, D.; Hartwig, J. F.; Rheingold, A. L.; Guzei, I. A. J. Am. Chem. Soc. 1998, 120, 9205.
doi: 10.1021/ja981428p pmid: 19453106 |
(b) Alvaro, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858.
doi: 10.1021/ja901793w pmid: 19453106 |
|
[14] |
Feng, Y. X.; Yang, S.; Zhao, S.; Zhang, D. P.; Li, X. J.; Liu, H.; Dong, Y. H.; Sun, F. G. Org. Lett. 2020, 22, 6734.
doi: 10.1021/acs.orglett.0c02091 |
[15] |
Burhardt, M. N.; Taaning, R. H.; Skrydstrup, T. Org. Lett. 2013, 15, 948.
doi: 10.1021/ol400138m pmid: 23383647 |
[16] |
Xie, S.; Su, L.; Mo, M.; Zhou, W.; Zhou, Y.; Dong, J. J. Org. Chem. 2021, 86, 739.
doi: 10.1021/acs.joc.0c02328 |
[17] |
Chou, Y. L.; Jhong, Y.; Swain, S. P.; Hou, D. R. J. Org. Chem. 2017, 82, 10201.
doi: 10.1021/acs.joc.7b01705 |
[18] |
Chung, J.; Seo, U. R.; Chun, S.; Chung, Y. K. ChemCatChem 2016, 8, 318.
doi: 10.1002/cctc.201501140 |
[19] |
Burhart, M. N.; Ahlburg, A.; Skrydstrup, T. J. Org. Chem. 2014, 79, 11830.
doi: 10.1021/jo5009965 |
[20] |
Sigh, P.; Peddinti, R. K. Tetrahedron Lett. 2017, 58, 1875.
|
[21] |
Gopinath, P.; Vidyarini, R. S.; Chandrasekaran, S. Eur. J. Org. Chem. 2009, 2009, 6043.
|
[22] |
Ali, W.; Guin, S.; Rout, S. K.; Gogoi, A.; Patel, B. K. Adv. Synth. Catal. 2014, 356, 3099.
doi: 10.1002/adsc.201400360 |
[1] | Yijun Shi, Xinyue Sun, Han Cao, Fusheng Bie, Jie Ma, Zhe Liu, Xingshun Cong. Thioesterification of Esters with Primary Aliphatic Thiols at Room Temperature [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2499-2505. |
[2] | Jiawei Huang, Xiaoman Li, Liang Xu, Yu Wei. Electrochemical Decarboxylation Coupling of α-Keto Acids with Thiophenols: A New Avenue for the Synthesis of Thioesters [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 756-762. |
[3] | Lei Zhang, Chen Yang, Xuefeng Guo, Fanyang Mo. Research Progress of Suzuki-Miyaura Cross-Coupling Reaction Mechanism [J]. Chinese Journal of Organic Chemistry, 2021, 41(9): 3492-3510. |
[4] | Shen Ningning, Liu Yanjie, Tian Rongqiang, Duan Zheng, Mathey Francois. Synthesis of Polycyclic Phosphacycles via 1-Phosphafulvene [J]. Chin. J. Org. Chem., 2019, 39(8): 2277-2286. |
[5] | Wang Ming, Wang Cuihong, Jiang Xuefeng. Recent Progress in the Sulfur-Containing Perfume & Flavors Construction [J]. Chin. J. Org. Chem., 2019, 39(8): 2139-2147. |
[6] | Li Ming, Ning Jiabin, Yu Le, Wen Lirong. Copper-Promoted Synthesis of Thiochromones Derivatives [J]. Chin. J. Org. Chem., 2016, 36(11): 2715-2722. |
[7] | Chen Chenchen, Li Sijian, Chen Yiqun, Xu Huajian, Li Yiming. Synthesis of Nesiritide via Ligation of Peptide Hydrazide [J]. Chin. J. Org. Chem., 2014, 34(7): 1452-1457. |
[8] | XU Hai-Nan, LIU Wen-Qi, PENG Li-Fen, QIU Ren-Hua, ZHAO Ya-Lei, PAN Jian-Gao, XU Xin-Hua. Titanocene Perfluorooctanesulfonate-Catalyzed Reductive Cleavage of S—S Bond by Zinc in Commercial Tetrahedron and Its Application in Synthesis of Thioesters [J]. Chin. J. Org. Chem., 2011, 31(10): 1719-1722. |
[9] |
SUN Hea,HU Weia,WANG Zong-Henga,LI Yue-Zhong*,a ZHAO Gui-Longb,WANG Jian-Wu*,b. Synthesis of Two Modified Intermediates in Epothilone Biosynthesis [J]. Chin. J. Org. Chem., 2008, 28(04): 657-662. |
[10] | LIANG Hong-Ze*,WANG Qiang. Investigation of Mechanism in the Oxidative Addition Reaction of Zerovalent Palladium to Chloro-substituted Phosphaalkene [J]. Chin. J. Org. Chem., 2006, 26(05): 694-697. |
[11] | Ye Qing;Cao Weiguo;Gao Jinsen. Recent advances in the syntheses and applications of thiolester derivatives [J]. Chin. J. Org. Chem., 2001, 21(10): 697-707. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||