Chinese Journal of Organic Chemistry ›› 2024, Vol. 44 ›› Issue (9): 2876-2888.DOI: 10.6023/cjoc202403015 Previous Articles Next Articles
ARTICLES
收稿日期:
2024-03-12
修回日期:
2024-04-08
发布日期:
2024-05-10
通讯作者:
苏贤斌
Wei Penga, Rong Chenga, Hao Liub, Dongmei Liua, Xianbin Sua()
Received:
2024-03-12
Revised:
2024-04-08
Published:
2024-05-10
Contact:
Xianbin Su
Share
Wei Peng, Rong Cheng, Hao Liu, Dongmei Liu, Xianbin Su. Highly Efficient Continuous Flow Liquid-Phase Peptide Synthesis Using a Soluble Hydrophobic Tag[J]. Chinese Journal of Organic Chemistry, 2024, 44(9): 2876-2888.
Entry | Cbz-AA-OH | Solvent | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | Cbz-Ala-OH | EA | 2.0 | 45.0 | >99 | 96 |
2 | Cbz-Ala-OH | THF | 2.0 | 45.0 | 27 | 22 |
3 | Cbz-Ala-OH | DCM | 2.0 | 45.0 | 87 | 72 |
Entry | Cbz-AA-OH | Solvent | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | Cbz-Ala-OH | EA | 2.0 | 45.0 | >99 | 96 |
2 | Cbz-Ala-OH | THF | 2.0 | 45.0 | 27 | 22 |
3 | Cbz-Ala-OH | DCM | 2.0 | 45.0 | 87 | 72 |
Entry | Cbz-AA-OH | Solvent | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | Cbz-Tyr(tBu)-OH | EA | 2.0 | 45.0 | >99 | 94 |
2 | Cbz-Ser(tBu)-OH | EA | 2.0 | 45.0 | >99 | 94 |
3 | Cbz-Lys(Boc)-OH | EA | 2.0 | 45.0 | >99 | 92 |
Entry | Cbz-AA-OH | Solvent | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | Cbz-Tyr(tBu)-OH | EA | 2.0 | 45.0 | >99 | 94 |
2 | Cbz-Ser(tBu)-OH | EA | 2.0 | 45.0 | >99 | 94 |
3 | Cbz-Lys(Boc)-OH | EA | 2.0 | 45.0 | >99 | 92 |
Entry | Cbz-AA-OH | Temp./℃ | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | Cbz-Ser(tBu)-OH | r.t. | 1.0 | 90.0 | >99 | 94 |
2 | Cbz-Ser(tBu)-OH | r.t. | 2.0 | 45.0 | >99 | 94 |
3 | Cbz-Ser(tBu)-OH | r.t. | 5.0 | 18.0 | >99 | 92 |
4 | Cbz-Ser(tBu)-OH | r.t. | 10.0 | 9.0 | >99 | 95 |
5 | Cbz-Ser(tBu)-OH | r.t. | 15.0 | 6.0 | >99 | 93 |
6 | Cbz-Ser(tBu)-OH | 30 | 1.0 | 90.0 | >99 | 92 |
7 | Cbz-Ser(tBu)-OH | 30 | 2.0 | 45.0 | >99 | 93 |
8 | Cbz-Ser(tBu)-OH | 30 | 5.0 | 18.0 | >99 | 96 |
9 | Cbz-Ser(tBu)-OH | 30 | 10.0 | 9.0 | >99 | 98 |
10 | Cbz-Ser(tBu)-OH | 30 | 15.0 | 6.0 | >99 | 93 |
11 | Cbz-Ser(tBu)-OH | 40 | 1.0 | 90.0 | >99 | 92 |
12 | Cbz-Ser(tBu)-OH | 40 | 2.0 | 45.0 | >99 | 94 |
13 | Cbz-Ser(tBu)-OH | 40 | 5.0 | 18.0 | >99 | 92 |
14 | Cbz-Ser(tBu)-OH | 40 | 10.0 | 9.0 | >99 | 97 |
15 | Cbz-Ser(tBu)-OH | 40 | 15.0 | 6.0 | >99 | 93 |
16 | Cbz-Ser(tBu)-OH | 50 | 1.0 | 90.0 | >99 | 91 |
17 | Cbz-Ser(tBu)-OH | 50 | 2.0 | 45.0 | >99 | 93 |
18 | Cbz-Ser(tBu)-OH | 50 | 5.0 | 18.0 | >99 | 92 |
19 | Cbz-Ser(tBu)-OH | 50 | 10.0 | 9.0 | >99 | 95 |
20 | Cbz-Ser(tBu)-OH | 50 | 15.0 | 6.0 | >99 | 93 |
Entry | Cbz-AA-OH | Temp./℃ | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | Cbz-Ser(tBu)-OH | r.t. | 1.0 | 90.0 | >99 | 94 |
2 | Cbz-Ser(tBu)-OH | r.t. | 2.0 | 45.0 | >99 | 94 |
3 | Cbz-Ser(tBu)-OH | r.t. | 5.0 | 18.0 | >99 | 92 |
4 | Cbz-Ser(tBu)-OH | r.t. | 10.0 | 9.0 | >99 | 95 |
5 | Cbz-Ser(tBu)-OH | r.t. | 15.0 | 6.0 | >99 | 93 |
6 | Cbz-Ser(tBu)-OH | 30 | 1.0 | 90.0 | >99 | 92 |
7 | Cbz-Ser(tBu)-OH | 30 | 2.0 | 45.0 | >99 | 93 |
8 | Cbz-Ser(tBu)-OH | 30 | 5.0 | 18.0 | >99 | 96 |
9 | Cbz-Ser(tBu)-OH | 30 | 10.0 | 9.0 | >99 | 98 |
10 | Cbz-Ser(tBu)-OH | 30 | 15.0 | 6.0 | >99 | 93 |
11 | Cbz-Ser(tBu)-OH | 40 | 1.0 | 90.0 | >99 | 92 |
12 | Cbz-Ser(tBu)-OH | 40 | 2.0 | 45.0 | >99 | 94 |
13 | Cbz-Ser(tBu)-OH | 40 | 5.0 | 18.0 | >99 | 92 |
14 | Cbz-Ser(tBu)-OH | 40 | 10.0 | 9.0 | >99 | 97 |
15 | Cbz-Ser(tBu)-OH | 40 | 15.0 | 6.0 | >99 | 93 |
16 | Cbz-Ser(tBu)-OH | 50 | 1.0 | 90.0 | >99 | 91 |
17 | Cbz-Ser(tBu)-OH | 50 | 2.0 | 45.0 | >99 | 93 |
18 | Cbz-Ser(tBu)-OH | 50 | 5.0 | 18.0 | >99 | 92 |
19 | Cbz-Ser(tBu)-OH | 50 | 10.0 | 9.0 | >99 | 95 |
20 | Cbz-Ser(tBu)-OH | 50 | 15.0 | 6.0 | >99 | 93 |
Entry | Flow rate/(mL•min-1) | p(H2)/MPa | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|
1 | 2.0 | 0.1 | 235.5 | 65 | 62 |
2 | 2.0 | 0.2 | 235.5 | 74 | 70 |
3 | 2.0 | 0.5 | 235.5 | 85 | 80 |
4 | 2.0 | 1.0 | 235.5 | 95 | 92 |
5 | 5.0 | 1.0 | 94.2 | >99 | 95 |
6 | 5.0 | 1.5 | 94.2 | >99 | 96 |
7 | 10.0 | 1.0 | 47.1 | >99 | 95 |
8 | 10.0 | 1.5 | 47.1 | >99 | 97 |
9 | 15.0 | 1.0 | 31.4 | >99 | 97 |
10 | 15.0 | 1.5 | 31.4 | >99 | 98 |
Entry | Flow rate/(mL•min-1) | p(H2)/MPa | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|
1 | 2.0 | 0.1 | 235.5 | 65 | 62 |
2 | 2.0 | 0.2 | 235.5 | 74 | 70 |
3 | 2.0 | 0.5 | 235.5 | 85 | 80 |
4 | 2.0 | 1.0 | 235.5 | 95 | 92 |
5 | 5.0 | 1.0 | 94.2 | >99 | 95 |
6 | 5.0 | 1.5 | 94.2 | >99 | 96 |
7 | 10.0 | 1.0 | 47.1 | >99 | 95 |
8 | 10.0 | 1.5 | 47.1 | >99 | 97 |
9 | 15.0 | 1.0 | 31.4 | >99 | 97 |
10 | 15.0 | 1.5 | 31.4 | >99 | 98 |
Entry | H2N-AA-SPPM | p(H2)/MPa | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | H2N-Ala-SPPM | 1.5 | 2.0 | 235.5 | >99 | 98 |
2 | H2N-Tyr(tBu)-SPPM | 1.5 | 2.0 | 235.5 | >99 | 98 |
3 | H2N-Ser(tBu)-SPPM | 1.5 | 2.0 | 235.5 | >99 | 97 |
4 | H2N-Lys(Boc)-SPPM | 1.5 | 2.0 | 235.5 | >99 | 97 |
5 | H2N-Ala-SPPM | 1.5 | 5.0 | 94.2 | >99 | 98 |
6 | H2N-Tyr(tBu)-SPPM | 1.5 | 5.0 | 94.2 | >99 | 98 |
7 | H2N-Ser(tBu)-SPPM | 1.5 | 5.0 | 94.2 | >99 | 97 |
8 | H2N-Lys(Boc)-SPPM | 1.5 | 5.0 | 94.2 | >99 | 98 |
9 | H2N-Ala-SPPM | 1.5 | 15.0 | 31.4 | >99 | 98 |
10 | H2N-Tyr(tBu)-SPPM | 1.5 | 15.0 | 31.4 | >99 | 98 |
11 | H2N-Ser(tBu)-SPPM | 1.5 | 15.0 | 31.4 | >99 | 99 |
12 | H2N-Lys(Boc)-SPPM | 1.5 | 15.0 | 31.4 | >99 | 98 |
Entry | H2N-AA-SPPM | p(H2)/MPa | Flow rate/(mL•min-1) | Reaction timea/s | Conversionb/% | Yieldc/% |
---|---|---|---|---|---|---|
1 | H2N-Ala-SPPM | 1.5 | 2.0 | 235.5 | >99 | 98 |
2 | H2N-Tyr(tBu)-SPPM | 1.5 | 2.0 | 235.5 | >99 | 98 |
3 | H2N-Ser(tBu)-SPPM | 1.5 | 2.0 | 235.5 | >99 | 97 |
4 | H2N-Lys(Boc)-SPPM | 1.5 | 2.0 | 235.5 | >99 | 97 |
5 | H2N-Ala-SPPM | 1.5 | 5.0 | 94.2 | >99 | 98 |
6 | H2N-Tyr(tBu)-SPPM | 1.5 | 5.0 | 94.2 | >99 | 98 |
7 | H2N-Ser(tBu)-SPPM | 1.5 | 5.0 | 94.2 | >99 | 97 |
8 | H2N-Lys(Boc)-SPPM | 1.5 | 5.0 | 94.2 | >99 | 98 |
9 | H2N-Ala-SPPM | 1.5 | 15.0 | 31.4 | >99 | 98 |
10 | H2N-Tyr(tBu)-SPPM | 1.5 | 15.0 | 31.4 | >99 | 98 |
11 | H2N-Ser(tBu)-SPPM | 1.5 | 15.0 | 31.4 | >99 | 99 |
12 | H2N-Lys(Boc)-SPPM | 1.5 | 15.0 | 31.4 | >99 | 98 |
Entry | Cbz-AA-OH/ H2N-AA-OH/ H2N-AA-SPPM | A1b/% | A2b/% | A3b/% | B1c/% | B2c/% |
---|---|---|---|---|---|---|
1 | Cbz-Ala-OH | 3.1 | 0 | — | 0 | — |
2 | Cbz-Pro-OH | 2.6 | 0 | — | 0 | — |
3 | Cbz-Tyr(tBu)-OH | 10.2 | 3.9 | 1.3 | 0.9 | 0 |
4 | Cbz-Lys(Boc)-OH | 10.1 | 3.5 | 0 | 0 | — |
5 | Cbz-Arg(Pbf)-OH | 17.4 | 4.6 | 2.0 | 0.7 | — |
6 | Cbz-Asn(Trt)-OH | 59.4 | 47.7 | 42.2 | 31.7 | 7.9 |
7 | H2N-Arg(Pbf)-OH | 3.5 | 0 | — | 0 | — |
8 | H2N-Asn(Trt)-OH | 2.0 | 0 | — | 0 | — |
9 | H2N-Arg(Pbf)-SPPM | 3.3 | 0 | — | 0 | — |
10 | H2N-Asn(Trt)-OH | 2.1 | 0 | — | 0 | — |
Entry | Cbz-AA-OH/ H2N-AA-OH/ H2N-AA-SPPM | A1b/% | A2b/% | A3b/% | B1c/% | B2c/% |
---|---|---|---|---|---|---|
1 | Cbz-Ala-OH | 3.1 | 0 | — | 0 | — |
2 | Cbz-Pro-OH | 2.6 | 0 | — | 0 | — |
3 | Cbz-Tyr(tBu)-OH | 10.2 | 3.9 | 1.3 | 0.9 | 0 |
4 | Cbz-Lys(Boc)-OH | 10.1 | 3.5 | 0 | 0 | — |
5 | Cbz-Arg(Pbf)-OH | 17.4 | 4.6 | 2.0 | 0.7 | — |
6 | Cbz-Asn(Trt)-OH | 59.4 | 47.7 | 42.2 | 31.7 | 7.9 |
7 | H2N-Arg(Pbf)-OH | 3.5 | 0 | — | 0 | — |
8 | H2N-Asn(Trt)-OH | 2.0 | 0 | — | 0 | — |
9 | H2N-Arg(Pbf)-SPPM | 3.3 | 0 | — | 0 | — |
10 | H2N-Asn(Trt)-OH | 2.1 | 0 | — | 0 | — |
Solid-phase synthesis | Price | Continuous flow liquid-phase synthesis | Price |
---|---|---|---|
Fmoc-Gly-OH | 2.12 yuan/g | Cbz-Gly-OH | 0.59 yuan/g |
Fmoc-Pro-OH | 3.47 yuan/g | Cbz-Pro-OH | 0.37 yuan/g |
Fmoc-Arg(Pbf)-OH | 6.01 yuan/g | Cbz-Arg(Pbf)-OH | 6.64 yuan/g |
Fmoc-Ala-OH | 1.75 yuan/g | Cbz-Ala-OH | 0.57 yuan/g |
DIC | 0.81 yuan/g | EDC•HCl | 0.42 yuan/g |
DMF | 36 yuan/L | EA | 12 yuan//L |
Solid-phase synthesis | Price | Continuous flow liquid-phase synthesis | Price |
---|---|---|---|
Fmoc-Gly-OH | 2.12 yuan/g | Cbz-Gly-OH | 0.59 yuan/g |
Fmoc-Pro-OH | 3.47 yuan/g | Cbz-Pro-OH | 0.37 yuan/g |
Fmoc-Arg(Pbf)-OH | 6.01 yuan/g | Cbz-Arg(Pbf)-OH | 6.64 yuan/g |
Fmoc-Ala-OH | 1.75 yuan/g | Cbz-Ala-OH | 0.57 yuan/g |
DIC | 0.81 yuan/g | EDC•HCl | 0.42 yuan/g |
DMF | 36 yuan/L | EA | 12 yuan//L |
Compound method | Solid phase synthesis | Continuous flow liquid phase synthesis |
---|---|---|
Combined efficiency | Heterogeneous reaction, low atom economy | Homogeneous reaction, high synthesis efficiency |
Monitoring measures | Detection method of ninhydrin cannot be monitored in real time | HPLC real-time monitoring of the reaction |
Removal process | Impurities could not be removed during the reaction. After the synthesis, it was purified by preparative chromatography | Each step in the synthesis process can be washed and purified to reduce the pressure on the final purification of the product |
Environmental protection | Use of a large number of reagents and organic solvents will cause irreversible damage to the environment | Solvent consumption in the reaction process is less, and green solvents can be selected |
Compound method | Solid phase synthesis | Continuous flow liquid phase synthesis |
---|---|---|
Combined efficiency | Heterogeneous reaction, low atom economy | Homogeneous reaction, high synthesis efficiency |
Monitoring measures | Detection method of ninhydrin cannot be monitored in real time | HPLC real-time monitoring of the reaction |
Removal process | Impurities could not be removed during the reaction. After the synthesis, it was purified by preparative chromatography | Each step in the synthesis process can be washed and purified to reduce the pressure on the final purification of the product |
Environmental protection | Use of a large number of reagents and organic solvents will cause irreversible damage to the environment | Solvent consumption in the reaction process is less, and green solvents can be selected |
[1] |
(a) Lau, J. L.; Dunn, M. K. Bioorg. Med. Chem. Lett. 2018, 26, 2700.
|
(b) Tanemura, Y.; Mochizuki, Y.; Kumachi, S. Biology 2015, 4, 161.
|
|
(c) Lin, K. J. V.; Emrick, J. J.; Kelly, M. J. S.; Herzig, V. Cell 2019, 178, 1362.
|
|
(d) Drucker, D. J. Nat. Rev. Drug Discovery 2020, 19, 277.
|
|
[2] |
(a) Thomas, K.; Markus, M. Methods Mol. Bol. 2022, 2384, 175.
|
(b) Ceccato, M. L.; Chenu, J.; Mery, J.; Follet, M.; Calas, B. Tetrahedron Lett. 1990, 31, 6189.
|
|
(c) Nicolas, E.; Clemente, J.; Ferrer, T. Tetrahedron 1997, 53, 3179.
|
|
[3] |
(a) Vincent, d. V.; Charlotte, R. J. Am. Chem. Soc. 1953, 75, 4879.
|
(b) Fan, J. H.; Bian, Y. N.; Su, X. B. Chem. J. Chin. Univ. 2018, 39, 2679 (in Chinese).
|
|
(范佳辉, 卞亚楠, 苏贤斌, 高等学校化学学报, 2018, 39, 2679.)
doi: 10.7503/cjcu20180350 |
|
(c) Lawrenson, S. B.; Arav, R.; North, M. Green Chem. 2017, 19, 1685.
|
|
[4] |
Rasmussen, J. H. Bioorg. Med. Chem. 2018, 26, 2914.
|
[5] |
Jadhav, S.; Seufert, W.; Lechner, C. Chimia 2021, 75, 476.
|
[6] |
Eggen, I. F.; Bakelaar, F. T.; Petersen, A. J. Pept. Sci. 2005, 11, 633.
pmid: 15880381 |
[7] |
Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149.
|
[8] |
Yin, H.; Chen, X. T. Acta Chim. Sinica 2022, 80, 444 (in Chinese).
|
(尹昊, 陈西同, 化学学报, 2022, 80, 444.)
doi: 10.6023/A21120580 |
|
[9] |
Zhuang, H.; Hao, H.; Qiu, Y. Chin. J. Chem. 2023, 41, 2010.
|
[10] |
Li, T.; Zhang, Y. Peng, P. Chin. J. Chem. 2022, 40, 1571.
|
[11] |
Al Musaimi, O.; de la Torre, B. G.; Albericio, F. Green Chem. 2020, 22, 996.
|
[12] |
Bonnamour, J.; Metro, T. X.; Martinez, J.; Lamaty, F. Green Chem. 2013, 15, 1116.
|
[13] |
(a) Egelund, P. H. G.; Jadhav, S. ACS Sustainable Chem. Eng. 2021, 9, 14202.
|
(b) Martin, V.; Jadhav, S.; Egelund, P. H. G. Green Chem. 2021, 23, 3295.
|
|
(c) Xu, B. F.; Yang, S.; Zhu, J. M.; Ma, Y. D.; Zhao, G.; Guo, Y.; Xu, L. Chem. Res. Chin. Univ. 2014, 30, 103.
|
|
[14] |
Shemyakin, M. M.; Ovchinnikov, Y. A. Tetrahedron Lett. 1965, 6, 2323.
|
[15] |
Pillai, V. N. R.; Mutter, M.; Bayer, E. J. Org. Chem. 1980, 45, 5364.
|
[16] |
(a) Bayer, E.; Mutter, M. Nature 1972, 237, 512.
pmid: 4427055 |
(b) Bayer, E.; Mutter, M.; Uhmann, R.; Polster, J.; Mauser, H. J. Am. Chem. Soc. 1974, 96, 7333.
pmid: 4427055 |
|
(c) Musaimi, O.; Albericio, F. Green Chem. 2020, 22, 996.
pmid: 4427055 |
|
(d) Mutter, M.; Hagenmaier, H.; Bayer, E. Angew. Chem. Int. Ed. 1971, 10, 811.
pmid: 4427055 |
|
(e) Mutter, M.; Bayer, E. Angew. Chem. Int. Ed. 1974, 13, 88.
pmid: 4427055 |
|
(f) Bayer, E.; Mutter, M. Chem. Ber. 1974, 107, 1344.
pmid: 4427055 |
|
[17] |
Hitoshi, T.; Tomoyuki, O. Bull. Chem. Soc. Jpn. 2001, 74, 733.
|
[18] |
Takahashi, D.; Yamamoto, T. Tetrahedron Lett. 2012, 53, 1936.
|
[19] |
Takahashi, D. Org. Lett. 2012, 14, 4514.
doi: 10.1021/ol302002g pmid: 22920411 |
[20] |
(a) Li, H.; Chao, J.; Qin, C. G. J. Org. Chem. 2020, 85, 6271.
|
(b) Li, H.; Chao, J.; Qin, C. G. Org. Chem. Front. 2020, 7, 689.
|
|
(c) Li, H.; Chao, J.; Qin, C. G. Org. Lett. 2020, 22, 3323.
|
|
[21] |
Lu, D.; Wang, S.; Yin, H. Synlett 2020, 31, 1163.
|
[22] |
(a) Tetsu, T.; Hidekazu, O.; Shu, K. Nature 2015, 520, 329.
|
(b) Sheng, B. S.; Li, C.; Liu, Y. Y.; Wang, A. J.; Wang, Y.; Zhang, J.; Liu, W. X. Chem. J. Chin. Univ. 2019, 40, 1365.
|
|
[23] |
Adamo, A.; Beingessner, R. L.; Behnam, M. Science 2016, 352, 61.
|
[24] |
Szloszar, A. ChemistrySelect 2017, 2, 6036.
|
[25] |
Audubert, C.; Gamboa, M. O. J.; Lebel, H. Angew. Chem. 2017, 129, 6391.
|
[26] |
(a) Cheng, D.; Chen, F. E. Chem. Ind. Eng. Prog. 2019, 38, 556 (in Chinese).
|
(程荡, 陈芬儿, 化工进展, 2019, 38, 556.)
doi: 10.16085/j.issn.1000-6613.2018-1174 |
|
(b) Gordon, C. P. Org. Biomol. Chem. 2018, 16, 180.
|
|
[27] |
Loubiere, K.; Oelgemoller, M.; Aillet, T.; Dechy-Cabaret, O.; Prat, L. Chem. Eng. Process. 2016, 104, 120.
|
[28] |
Mizuno, K.; Nishiyama, Y.; Ogaki, T.; Terao, K.; Ikeda, H.; Kakiuchi, K. J. Photochem. Photobiol., C 2016, 29, 107.
|
[29] |
Fuse, S.; Otake, Y.; Nakamura, H. Eur. J. Org. Chem. 2017, 6466.
|
[30] |
Otake, Y.; Nakamura, H.; Fuse, S. Tetrahedron Lett. 2018, 59, 1691.
|
[31] |
Politano, F.; Oksdath-Mansilla, G. Org. Process Res. Dev. 2018, 22, 1045.
|
[32] |
Di Filippo, M.; Bracken, C.; Baumann, M. Molecules 2020, 25, 356.
|
[33] |
Bacsa, B.; Kappe, C. O. Nat. Protoc. 2007, 2, 2222.
|
[34] |
Szloszar, A.; Mandity, I. M. J. Flow Chem. 2018, 8, 21.
|
[35] |
Hartrampf, N.; Saebi, A.; Poskus, M.; Gates, Z. P.; Pentelute, B. L. Science 2020, 368, 980.
doi: 10.1126/science.abb2491 pmid: 32467387 |
[36] |
Mandity, I. M.; Olasz, B.; Otvos, S. B.; Fulop, F. ChemSusChem 2014, 7, 3172.
|
[37] |
Nishimura, S.; Higashi, N.; Koga, T. J. Polym. Sci., Part A: Polym. Chem. 2019, 10, 71.
|
[38] |
Fuse, S.; Mifune, Y.; Takahashi, T. Angew. Chem. Int. Ed. 2014, 53, 851.
|
[39] |
Otake, Y. Adachi, K. Fuse, S. React. Chem. Eng. 2023, 8, 863.
|
[40] |
Li, S. J.; Yang, Y.; Cui, Y. Y.; Su, X. B. Chem. J. Chin. Univ. 2020, 41, 1559 (in Chinese).
|
(李士杰, 杨洋, 崔营营, 苏贤斌, 高等学校化学学报, 2020, 41, 1559.)
doi: 10.7503/cjcu20200032 |
|
[41] |
Sabatini, M. T.; Boulton, L. T.; Sneddon, H. F. Nat. Catal. 2019, 2, 10.
doi: 10.1038/s41929-018-0211-5 |
[1] | Siyi Mi, Longlong Ma, Jianguo Liu. Research Progress of Continuous Flow Selective Hydrogenation Technology [J]. Chinese Journal of Organic Chemistry, 2024, 44(5): 1445-1457. |
[2] | Kangbo Feng, Jiong Chen, Shuangxi Gu, Haifeng Wang, Fen'er Chen. New Progress of Fully Continuous Flow Reaction Technologies in Pharmaceutical Synthesis (2019~2022) [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 378-397. |
[3] | Dandan Sui, Nannan Cen, Ruoqu Gong, Yang Chen, Wenbo Chen. Supporting-Electrolyte-Free Electrochemical Synthesis of Trifluoromethylated Oxindoles in Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3239-3245. |
[4] | Xiao Song, Jing Qing, Jun Li, Xuelei Jia, Fusong Wu, Junrong Huang, Jian Jin, Hengzhi You. Copper-Catalyzed Asymmetric Allyl Alkylation Using Grignard Reagents under Continuous Flow [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3174-3179. |
[5] | Jingpeng Li, Shuntao Huang, Qi Yang, Weiqiang Li, Teng Liu, Chao Huang. A Practical Synthesis of (Z)-N-Vinyl Substituted N,O-Acetals under Continuous Flow Technology [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1550-1558. |
[6] | Ding Liu, Yuanyuan Zhu, Shuangxi Gu, Fener Chen. Application of Flow Chemistry in Halogenation [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 1002-1011. |
[7] | Lai Shilin, Liao Xu, Zhang Hui, Jiang Yan, Liu Yuangang, Wang Shibin, Xiong Xingquan. Application of 3D Printing Technology in Organic Synthetic Chemistry [J]. Chin. J. Org. Chem., 2019, 39(7): 1858-1866. |
[8] | Gao Yunpeng, Wang Jianbo. Continuous Flow Reaction of Diazo Compounds [J]. Chin. J. Org. Chem., 2018, 38(6): 1275-1291. |
[9] | Zhou Junjie, Tang Zhike, Zhang Chao, Wang Dongtian, Zhang Kai, Sun Hongbin. CuCN-TsOH Catalyzed Synthesis of 2-Aryl-4,5-dihydro-1H-imidazoline in a Continuous-Flow Microreactor [J]. Chin. J. Org. Chem., 2016, 36(11): 2662-2669. |
[10] | Zhao Dongbo. Updated Applications of Flow Chemistry in Pharmaceutical Synthesis [J]. Chin. J. Org. Chem., 2013, 33(02): 389-405. |
[11] | Jin Jie, Dong Ling, Zhang Kehua, Liu Jin . Recent Advances in Microfluidic Synthesis [J]. Chin. J. Org. Chem., 2012, 32(01): 201-209. |
[12] | XIAO Shang-You, YANG Hao-Shu, LI Qian-Qian, QIU Jing, XIA Zhi-Ning. Investigation on Novel Microwave-Assisted Synthesis Method Based on MCM-41 Microreactor [J]. Chin. J. Org. Chem., 2011, 31(05): 690-694. |
[13] | Tong Zhenhe;Wu Lizhu;Zhang Liping. Photophysical and photochemical processes in supramolecular systems [J]. Chin. J. Org. Chem., 2001, 21(11): 784-797. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||