Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (11): 4167-4179.DOI: 10.6023/cjoc202105031 Previous Articles Next Articles
Special Issue: 热点论文虚拟合集
REVIEWS
收稿日期:
2021-05-17
修回日期:
2021-07-31
发布日期:
2021-08-17
通讯作者:
杜亚
基金资助:
Chaohui Cui, Yuting Liu, Ya Du()
Received:
2021-05-17
Revised:
2021-07-31
Published:
2021-08-17
Contact:
Ya Du
Supported by:
Share
Chaohui Cui, Yuting Liu, Ya Du. Recent Advancements of Hexaazatriphenylene-Based Materials for Energy Applications[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4167-4179.
材料名称 (电压窗口) | 电极组成及电解液 | 原始和稳定时 容量及氧化还原利用率 | 循环稳定性 | 速率能力 | 文献 | |||
---|---|---|---|---|---|---|---|---|
3Q (1.2~3.9 V) | 3Q∶graphene∶PVDF (3∶6∶1) 1.0 mol/L LiTFSI-DOL/DME | 0.4 mA/g: 395 mAh/g; 94% (1th) 324 mAh/g; 77% (200th) | 8 A/g: 82% (2000) 80% (6000) 67% (10000) | 0.4 A/g: 394 mAh/g 0.8 A/g: 334 mAh/g 1.6 A/g: 290 mAh/g 2.4 A/g: 268 mAh/g 3.2 A/g: 255 mAh/g 4 A/g: 242 mAh/g 8 A/g: 218 mAh/g | [ | |||
HATN/GO (1.5~4.0 V) | HATN/GO∶GO∶PVDF (5∶4∶1) 1 mol/L LiPF6-EC/DEC | 0.05 A/g: 410 mAh/g; 98% (1th) 226 mAh/g; 54% (90th) | 0.5 A/g 80% (2000) | 0.1 A/g: 270 mAh/g 0.2 A/g: 227 mAh/g 0.3 A/g: 211 mAh/g 0.4 A/g: 186 mAh/g 0.5 A/g: 167 mAh/g 1 A/g: 92 mAh/g | [ | |||
HATNTA/GO (1.5~4.0 V) | HATNTA/GO∶GO∶PVDF (5∶4∶1) 1 mol/L LiPF6-EC/DEC | 0.05 A/g: 226 mAh/g; 73% (1th) 193 mAh/g; 62% (50th) | 0.5 A/g 86% (2000) | 0.1 A/g: 215 mAh/g 0.2 A/g: 193 mAh/g 0.3 A/g: 183 mAh/g 0.4 A/g: 170 mAh/g 0.5 A/g: 133 mAh/g 1 A/g: 114 mAh/g | [ | |||
HATN-CMP (1.5~4.0 V) | HATN-CMP∶acetylene black∶PVDF (6∶3∶2) 1 mol/L LiPF6-EC/DMC | 0.1 A/g: 147 mAh/g; 71% (1th) 91 mAh/g; 43% (50th) | 0.1 A/g: 62% (50) | 0.1 A/g: 147 mAh/g 0.5 A/g: 65 mAh/g | [ | |||
HATNPF1 (1.5~4.0 V) | HATNPF1∶GO∶PVDF (4∶5∶1) LiCF3SO3/G4 | 0.05 A/g: 309 mAh/g; 74% (1th) 290 mAh/g; 69% (130th) | 0.5 A/g 92% (1200) | 0.1 A/g: 267 mAh/g 2 A/g: 174 mAh/g | [ | |||
HATNPF2 (1.5~4.0 V) | HATNPF2∶GO∶PVDF (4∶5∶1) LiCF3SO3/G4 | 0.05 A/g: 205 mAh/g; 51% (1th) 115 mAh/g; 29% (130th) | 0.5 A/g 66% (1200) | 0.1 A/g: 200 mAh/g 2 A/g: 112 mAh/g | [ | |||
NSHATN (1.5~4.0 V) | NSHATN∶GO∶PVDF (5∶4∶1) LiCF3SO3/G4 | 0.05 A/g: 320 mAh/g; 86% (1th) 234 mAh/g; 63% (100th) | 0.5 A/g 83% (1500) | 0.1 A/g: 270 mAh/g 8 A/g: 100 mAh/g | [ | |||
2D CCP-HATN @CNT (1.2~3.9 V) | 2D CCP-HATN @CNT∶Super P∶Alg (8∶1∶1) 1 mol/L LiTFSI-DOL/DME | 0.1 A/g: 116 mAh/g; 73% (1th) 114 mAh/g; 73% (50th) | 0.5 A/g 91.2% (1000) | 0.1 A/g: 116 mAh/g 1 A/g: 94 mAh/g | [ | |||
BQ1-COF (1.2~3.5 V) | BQ1-COF∶Super P∶PVDF (5∶4∶1) 1 mol/L LiTFSI-DOL/DME | 0.039 A/g 502 mAh/g; 65% (2th) | 1.54 A/g 81% (1000) | 0.039 A/g: 502 mAh/g 7.73 A/g: 171mAh/g | [ | |||
PHATN(Na) (1.0~3.5 V) | PHATN∶Ketjenblack∶PVDF (6∶3∶1) 4 or 1 mol/L NaPF6-DME | 0.05 A/g: 220 mAh/g (2th) 205 mAh/g (100th) | 2A/g 89.2% (10000) 10 A/g 83.8% (50000) | 0.05 A/g: 220 mAh/g 2 A/g: 164 mAh/g 4.8 A/g: 138 mAh/g 10 A/g: 105 mAh/g | [ | |||
PHATN(Mg) (0.5~2.3 V) | PHATN: Ketjenblack: PTFE (6∶3∶1) | 0.02 A/g: 146 mAh/g (1th) 110 mAh/g (200th) | 0.02 A/g 89% (200) | 0.02 A/g: 125 mAh/g 0.2 A/g: 60 mAh/g | [ | |||
材料名称 (电压窗口) | 电极组成及电解液 | 原始和稳定时 容量及氧化还原利用率 | 循环稳定性 | 速率能力 | 文献 | |||
PHATN(Al) (0.2~1.2 V) | PHATN∶Ketjenblack∶PTFE (6∶3∶1) AlCl3-[BMIm]Cl离子液体 | 0.05 A/g: 145 mAh/g (1th) 92 mAh/g (100th) | 0.05 A/g 87% (100) | [ | ||||
Zn-HATN (0.2~1.2 V) | Zn-HATN∶Super P∶PVDF (6∶3.5∶0.5) 2 mol/L ZnSO4 | 0.1 A/g: 405 mAh/g; 96% (1th) 320 mAh/g; 76% (150th) | 5 A/g 93.3% (5000) | 0.1 A/g: 370 mAh/g 20 A/g: 123 mAh/g | [ | |||
TQBQ-COF (Na) (1.0~3.6 V) | TQBQ-COF∶Super P∶PVDF (5∶4∶1) 1.0 mol/L NaPF6-DEGDME | 0.02 A/g: 452 mAh/g; 88% (1th) 352 mAh/g; 68% (100th) | 1 A/g 96% (1000) | 0.3 A/g: 278 mAh/g 1.0 A/g: 234 mAh/g 5.0 A/g: 181 mAh/g 10 A/g: 134 mAh/g | [ | |||
HAT550@ZTC (Na离子电容器) (0.5~2.5 V) | HAT550@ZTC∶Super P∶羧甲基纤维素钠/聚丙烯酸(8∶1∶1) 1.0 mol/L NaClO4-EC/PC/FEC | 0.1 A/g: 448 mAh/g; (1th) 343 mAh/g; (40th) | 0.5 A/g 90% (1300) | 0.1 A/g: 343 mAh/g 20 A/g: 124 mAh/g | [ |
材料名称 (电压窗口) | 电极组成及电解液 | 原始和稳定时 容量及氧化还原利用率 | 循环稳定性 | 速率能力 | 文献 | |||
---|---|---|---|---|---|---|---|---|
3Q (1.2~3.9 V) | 3Q∶graphene∶PVDF (3∶6∶1) 1.0 mol/L LiTFSI-DOL/DME | 0.4 mA/g: 395 mAh/g; 94% (1th) 324 mAh/g; 77% (200th) | 8 A/g: 82% (2000) 80% (6000) 67% (10000) | 0.4 A/g: 394 mAh/g 0.8 A/g: 334 mAh/g 1.6 A/g: 290 mAh/g 2.4 A/g: 268 mAh/g 3.2 A/g: 255 mAh/g 4 A/g: 242 mAh/g 8 A/g: 218 mAh/g | [ | |||
HATN/GO (1.5~4.0 V) | HATN/GO∶GO∶PVDF (5∶4∶1) 1 mol/L LiPF6-EC/DEC | 0.05 A/g: 410 mAh/g; 98% (1th) 226 mAh/g; 54% (90th) | 0.5 A/g 80% (2000) | 0.1 A/g: 270 mAh/g 0.2 A/g: 227 mAh/g 0.3 A/g: 211 mAh/g 0.4 A/g: 186 mAh/g 0.5 A/g: 167 mAh/g 1 A/g: 92 mAh/g | [ | |||
HATNTA/GO (1.5~4.0 V) | HATNTA/GO∶GO∶PVDF (5∶4∶1) 1 mol/L LiPF6-EC/DEC | 0.05 A/g: 226 mAh/g; 73% (1th) 193 mAh/g; 62% (50th) | 0.5 A/g 86% (2000) | 0.1 A/g: 215 mAh/g 0.2 A/g: 193 mAh/g 0.3 A/g: 183 mAh/g 0.4 A/g: 170 mAh/g 0.5 A/g: 133 mAh/g 1 A/g: 114 mAh/g | [ | |||
HATN-CMP (1.5~4.0 V) | HATN-CMP∶acetylene black∶PVDF (6∶3∶2) 1 mol/L LiPF6-EC/DMC | 0.1 A/g: 147 mAh/g; 71% (1th) 91 mAh/g; 43% (50th) | 0.1 A/g: 62% (50) | 0.1 A/g: 147 mAh/g 0.5 A/g: 65 mAh/g | [ | |||
HATNPF1 (1.5~4.0 V) | HATNPF1∶GO∶PVDF (4∶5∶1) LiCF3SO3/G4 | 0.05 A/g: 309 mAh/g; 74% (1th) 290 mAh/g; 69% (130th) | 0.5 A/g 92% (1200) | 0.1 A/g: 267 mAh/g 2 A/g: 174 mAh/g | [ | |||
HATNPF2 (1.5~4.0 V) | HATNPF2∶GO∶PVDF (4∶5∶1) LiCF3SO3/G4 | 0.05 A/g: 205 mAh/g; 51% (1th) 115 mAh/g; 29% (130th) | 0.5 A/g 66% (1200) | 0.1 A/g: 200 mAh/g 2 A/g: 112 mAh/g | [ | |||
NSHATN (1.5~4.0 V) | NSHATN∶GO∶PVDF (5∶4∶1) LiCF3SO3/G4 | 0.05 A/g: 320 mAh/g; 86% (1th) 234 mAh/g; 63% (100th) | 0.5 A/g 83% (1500) | 0.1 A/g: 270 mAh/g 8 A/g: 100 mAh/g | [ | |||
2D CCP-HATN @CNT (1.2~3.9 V) | 2D CCP-HATN @CNT∶Super P∶Alg (8∶1∶1) 1 mol/L LiTFSI-DOL/DME | 0.1 A/g: 116 mAh/g; 73% (1th) 114 mAh/g; 73% (50th) | 0.5 A/g 91.2% (1000) | 0.1 A/g: 116 mAh/g 1 A/g: 94 mAh/g | [ | |||
BQ1-COF (1.2~3.5 V) | BQ1-COF∶Super P∶PVDF (5∶4∶1) 1 mol/L LiTFSI-DOL/DME | 0.039 A/g 502 mAh/g; 65% (2th) | 1.54 A/g 81% (1000) | 0.039 A/g: 502 mAh/g 7.73 A/g: 171mAh/g | [ | |||
PHATN(Na) (1.0~3.5 V) | PHATN∶Ketjenblack∶PVDF (6∶3∶1) 4 or 1 mol/L NaPF6-DME | 0.05 A/g: 220 mAh/g (2th) 205 mAh/g (100th) | 2A/g 89.2% (10000) 10 A/g 83.8% (50000) | 0.05 A/g: 220 mAh/g 2 A/g: 164 mAh/g 4.8 A/g: 138 mAh/g 10 A/g: 105 mAh/g | [ | |||
PHATN(Mg) (0.5~2.3 V) | PHATN: Ketjenblack: PTFE (6∶3∶1) | 0.02 A/g: 146 mAh/g (1th) 110 mAh/g (200th) | 0.02 A/g 89% (200) | 0.02 A/g: 125 mAh/g 0.2 A/g: 60 mAh/g | [ | |||
材料名称 (电压窗口) | 电极组成及电解液 | 原始和稳定时 容量及氧化还原利用率 | 循环稳定性 | 速率能力 | 文献 | |||
PHATN(Al) (0.2~1.2 V) | PHATN∶Ketjenblack∶PTFE (6∶3∶1) AlCl3-[BMIm]Cl离子液体 | 0.05 A/g: 145 mAh/g (1th) 92 mAh/g (100th) | 0.05 A/g 87% (100) | [ | ||||
Zn-HATN (0.2~1.2 V) | Zn-HATN∶Super P∶PVDF (6∶3.5∶0.5) 2 mol/L ZnSO4 | 0.1 A/g: 405 mAh/g; 96% (1th) 320 mAh/g; 76% (150th) | 5 A/g 93.3% (5000) | 0.1 A/g: 370 mAh/g 20 A/g: 123 mAh/g | [ | |||
TQBQ-COF (Na) (1.0~3.6 V) | TQBQ-COF∶Super P∶PVDF (5∶4∶1) 1.0 mol/L NaPF6-DEGDME | 0.02 A/g: 452 mAh/g; 88% (1th) 352 mAh/g; 68% (100th) | 1 A/g 96% (1000) | 0.3 A/g: 278 mAh/g 1.0 A/g: 234 mAh/g 5.0 A/g: 181 mAh/g 10 A/g: 134 mAh/g | [ | |||
HAT550@ZTC (Na离子电容器) (0.5~2.5 V) | HAT550@ZTC∶Super P∶羧甲基纤维素钠/聚丙烯酸(8∶1∶1) 1.0 mol/L NaClO4-EC/PC/FEC | 0.1 A/g: 448 mAh/g; (1th) 343 mAh/g; (40th) | 0.5 A/g 90% (1300) | 0.1 A/g: 343 mAh/g 20 A/g: 124 mAh/g | [ |
[1] |
Nasielski-Hinkens, R.; Benedek-Vamos, M.; Maetens, D.; Nasielski, J. J. Organomet. Chem. 1981, 217, 179.
doi: 10.1016/S0022-328X(00)85778-2 |
[2] |
(a) Deng, H. L.; Luo, X. S.; Li, Z. H.; Zhao, J. Y.; Huang, M. H. Chin. J. Org. Chem. 2021, 41, 624. (in Chinese)
doi: 10.6023/cjoc202005070 |
(邓汉林, 罗贤升, 李志华, 赵江颖, 黄木华, 有机化学, 2021, 41, 624.)
doi: 10.6023/cjoc202005070 |
|
(b) Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606. (in Chinese)
doi: 10.6023/cjoc201804009 |
|
(庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
doi: 10.6023/cjoc201804009 |
|
[3] |
(a) Kitagawa, S.; Masaoka, S. Coord. Chem. Rev. 2003, 246, 73.
doi: 10.1016/S0010-8545(03)00109-7 pmid: 26168289 |
(b) Segura, J. L.; Juárez, R.; Ramos, M.; Seoane, C. Chem. Soc. Rev. 2015, 44, 6850.
doi: 10.1039/c5cs00181a pmid: 26168289 |
|
(c) Yan, X.-Y.; Lin, M.-D.; Zheng, S.-T.; Zhan, T.-G.; Zhang, X.; Zhang, K.-D.; Zhao, X. Tetrahedron Lett. 2018, 59, 592.
doi: 10.1016/j.tetlet.2018.01.004 pmid: 26168289 |
|
[4] |
(a) Liu, R.; von Malotki, C.; Arnold, L.; Koshino, N.; Higashimura, H.; Baumgarten, M.; Müllen, K. J. Am. Chem. Soc. 2011, 133, 10372.
doi: 10.1021/ja203776f |
(b) Ibáñez, S.; Poyatos, M.; Peris, E. Chem. Commun. 2017, 53, 3733.
doi: 10.1039/C7CC00525C |
|
[5] |
Ramimoghadam, D.; Gray, E. M.; Webb, C. J. Int. J. Hydrogen Energy 2016, 41, 16944.
doi: 10.1016/j.ijhydene.2016.07.134 |
[6] |
(a) Lee, J.-S. M.; Cooper, A. I. Chem. Rev. 2020, 120, 2171.
doi: 10.1021/acs.chemrev.9b00399 |
(b) Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
doi: 10.1039/c3cs60160a |
|
[7] |
(a) Hisaki, I.; Suzuki, Y.; Gomez, E.; Cohen, B.; Tohnai, N.; Douhal, A. Angew. Chem., Int. Ed. 2018, 57, 12650.
doi: 10.1002/anie.201805472 |
(b) Hisaki, I.; Suzuki, Y.; Gomez, E.; Ji, Q.; Tohnai, N.; Nakamura, T.; Douhal, A. J. Am. Chem. Soc. 2019, 141, 2111.
doi: 10.1021/jacs.8b12124 |
|
[8] |
(a) Côté, A. P.; Benin, A. I.; Ockwig, N. W.; Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.
doi: 10.1126/science.1120411 |
(b) Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.
doi: 10.1039/C2CS35072F |
|
(c) Huang, Z.; Xu, Q.; Hu, X. Chin. Chem. Lett. 2020, 31, 2495.
doi: 10.1016/j.cclet.2020.06.017 |
|
[9] |
Meng, Z.; Aykanat, A.; Mirica, K. A. Chem. Mater. 2019, 31, 819.
doi: 10.1021/acs.chemmater.8b03897 |
[10] |
(a) Yuan, F.; Li, J.; Namuangruk, S.; Kungwan, N.; Guo, J.; Wang, C. Chem. Mater. 2017, 29, 3971.
doi: 10.1021/acs.chemmater.7b00353 |
(b) Tahir, N.; Wang, G.; Onyshchenko, I.; De Geyter, N.; Leus, K.; Morent, R.; Van Der Voort, P. J. Catal. 2019, 375, 242.
doi: 10.1016/j.jcat.2019.06.001 |
|
(c) Huang, H.; Zhao, Y.; Bai, Y.; Li, F.; Zhang, Y.; Chen, Y. Adv. Sci. 2020, 7, 2000012.
doi: 10.1002/advs.v7.9 |
|
(d) Xiao, R.; Tobin, J. M.; Zha, M.; Hou, Y.-L.; He, J.; Vilela, F.; Xu, Z. J. Mater. Chem. A 2017, 5, 20180.
doi: 10.1039/C7TA05534J |
|
(e) Bai, C.; Wang, H.; Ning, F.; Fu, J.; Wei, J.; Lu, G.; Shen, Y.; Zhou, X. ChemCatChem 2020, 12, 4024.
doi: 10.1002/cctc.v12.16 |
|
[11] |
(a) Liu, X.-Y.; Usui, T.; Hanna, J. Chem.-Eur. J. 2014, 20, 14207.
doi: 10.1002/chem.v20.44 pmid: 25744355 |
(b) Mahmood, J.; Lee, E. K.; Jung, M.; Shin, D.; Jeon, I.-Y.; Jung, S.-M.; Choi, H.-J.; Seo, J.-M.; Bae, S.-Y.; Sohn, S.-D.; Park, N.; Oh, J. H.; Shin, H.-J.; Baek, J.-B. Nat. Commun. 2015, 6, 6486.
doi: 10.1038/ncomms7486 pmid: 25744355 |
|
[12] |
Gould, C. A.; Darago, L. E.; Gonzalez, M. I.; Demir, S.; Long, J. R. Angew. Chem., Int. Ed. 2017, 56, 10103.
doi: 10.1002/anie.v56.34 |
[13] |
Walczak, R.; Kurpil, B.; Savateev, A.; Heil, T.; Schmidt, J.; Qin, Q.; Antonietti, M.; Oschatz, M. Angew. Chem., Int. Ed. 2018, 57, 10765.
doi: 10.1002/anie.v57.33 |
[14] |
Kurpil, B.; Savateev, A.; Papaefthimiou, V.; Zafeiratos, S.; Heil, T.; Özenler, S.; Dontsova, D.; Antonietti, M. Appl. Catal., B 2017, 217, 622.
doi: 10.1016/j.apcatb.2017.06.036 |
[15] |
Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 120, 6490.
doi: 10.1021/acs.chemrev.9b00482 |
[16] |
Liang, Y.; Yao, Y. Joule 2018, 2, 1690.
doi: 10.1016/j.joule.2018.07.008 |
[17] |
(a) Chen, R.; Luo, R.; Huang, Y.; Wu, F.; Li, L. Adv. Sci. 2016, 3, 1600051.
doi: 10.1002/advs.v3.10 |
(b) Liu, J.; Zhang, J.-G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J.; Xia, G.; Viswanathan, V. V.; Baskaran, S.; Sprenkle, V.; Li, X.; Shao, Y.; Schwenzer, B. Adv. Funct. Mater. 2013, 23, 929.
doi: 10.1002/adfm.v23.8 |
|
[18] |
Larcher, D.; Tarascon, J. M. Nat. Chem. 2015, 7, 19.
doi: 10.1038/nchem.2085 pmid: 25515886 |
[19] |
Zhang, C. M.; Huang, Z.; Yang, Y.; Wang, D.; He, D. N. Chin. J. Org. Chem. 2014, 34, 1347. (in Chinese)
doi: 10.6023/cjoc201406013 |
(张春明, 黄昭, 杨扬, 王丹, 何丹农, 有机化学, 2014, 34, 1347.)
doi: 10.6023/cjoc201406013 |
|
[20] |
Wang, R.; Okajima, T.; Kitamura, F.; Matsumoto, N.; Thiemann, T.; Mataka, S.; Ohsaka, T. J. Phys. Chem. B 2003, 107, 9452.
doi: 10.1021/jp0305281 |
[21] |
Zhu, L.; Ding, G.; Xie, L.; Cao, X.; Liu, J.; Lei, X.; Ma, J. Chem. Mater. 2019, 31, 8582.
doi: 10.1021/acs.chemmater.9b03109 |
[22] |
Takayuki, M.; Takayuki, K.; Toyonari, S.; Masaharu, S. Chem. Lett. 2011, 40, 750.
doi: 10.1246/cl.2011.750 |
[23] |
Peng, C.; Ning, G.-H.; Su, J.; Zhong, G.; Tang, W.; Tian, B.; Su, C.; Yu, D.; Zu, L.; Yang, J.; Ng, M.-F.; Hu, Y.-S.; Yang, Y.; Armand, M.; Loh, K. P. Nat. Energy 2017, 2, 17074.
doi: 10.1038/nenergy.2017.74 |
[24] |
Wang, J.; Tee, K.; Lee, Y.; Riduan, S. N.; Zhang, Y. J. Mater. Chem. A 2018, 6, 2752.
doi: 10.1039/C7TA10232A |
[25] |
Xu, F.; Chen, X.; Tang, Z.; Wu, D.; Fu, R.; Jiang, D. Chem. Commun. 2014, 50, 4788.
doi: 10.1039/C4CC01002G |
[26] |
Wang, J.; Chen, C. S.; Zhang, Y. ACS Sustainable Chem. Eng. 2018, 6, 1772.
doi: 10.1021/acssuschemeng.7b03165 |
[27] |
Zhang, Y.; Riduan, S. N.; Wang, J. Chem.-Eur. J. 2017, 23, 16419.
doi: 10.1002/chem.v23.65 |
[28] |
Li, Q.; Wang, H.; Wang, H.-g.; Si, Z.; Li, C.; Bai, J. ChemSusChem 2020, 13, 2449.
doi: 10.1002/cssc.v13.9 |
[29] |
Wang, J.; Lee, Y.; Tee, K.; Riduan, S. N.; Zhang, Y. Chem. Commun. 2018, 54, 7681.
doi: 10.1039/C8CC03801E |
[30] |
Wang, J.; En, J. C. Z.; Riduan, S. N.; Zhang, Y. Chem.-Eur. J. 2020, 26, 2581.
doi: 10.1002/chem.v26.12 |
[31] |
Xu, S.; Wang, G.; Biswal, B. P.; Addicoat, M.; Paasch, S.; Sheng, W.; Zhuang, X.; Brunner, E.; Heine, T.; Berger, R.; Feng, X. Angew. Chem., Int. Ed. 2019, 58, 849.
doi: 10.1002/anie.v58.3 |
[32] |
Wu, M.; Zhao, Y.; Sun, B.; Sun, Z.; Li, C.; Han, Y.; Xu, L.; Ge, Z.; Ren, Y.; Zhang, M.; Zhang, Q.; Lu, Y.; Wang, W.; Ma, Y.; Chen, Y. Nano Energy 2020, 70, 104498.
doi: 10.1016/j.nanoen.2020.104498 |
[33] |
(a) Du, Y.; Cui, C. H.; Li, Z; Zhang, Y.; Jiang, H.; Liu, Y.CN 113292725, 2021.
|
(b) Yang, Y.; Zheng, F.; Xia, G.; Lun, Z.; Chen, Q. J. Mater. Chem. A 2015, 3, 18657.
doi: 10.1039/C5TA05676D |
|
[34] |
Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Wei, F.; Zhang, J.-G.; Zhang, Q. Adv. Sci. 2016, 3, 1600051.
doi: 10.1002/advs.v3.10 |
[35] |
Mao, M.; Gao, T.; Hou, S.; Wang, F.; Chen, J.; Wei, Z.; Fan, X.; Ji, X.; Ma, J.; Wang, C. Nano Lett. 2019, 19, 6665.
doi: 10.1021/acs.nanolett.9b02963 |
[36] |
Poizot, P.; Gaubicher, J.; Renault, S.; Dubois, L.; Liang, Y.; Yao, Y. Chem. Rev. 2020, 14, 6490.
|
[37] |
Mao, M.; Luo, C.; Pollard, T. P.; Hou, S.; Gao, T.; Fan, X.; Cui, C.; Yue, J.; Tong, Y.; Yang, G.; Deng, T.; Zhang, M.; Ma, J.; Suo, L.; Borodin, O.; Wang, C. Angew. Chem., Int. Ed. 2019, 58, 17820.
doi: 10.1002/anie.v58.49 |
[38] |
Shi, R.; Liu, L.; Lu, Y.; Wang, C.; Li, Y.; Li, L.; Yan, Z.; Chen, J. Nat. Commun. 2020, 11, 178.
doi: 10.1038/s41467-019-13739-5 |
[39] |
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Nat. Mater. 2017, 16, 841.
doi: 10.1038/nmat4919 |
[40] |
Wu, X.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T.; Bi, X.; Yuan, Y.; Qi, Y.; Surta, T. W.; Huang, W.; Neuefeind, J.; Wu, T.; Greaney, P. A.; Lu, J.; Ji, X. Nat. Energy 2019, 4, 123.
doi: 10.1038/s41560-018-0309-7 |
[41] |
Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z. Angew. Chem., Int. Ed. 2020, 59, 4920.
doi: 10.1002/anie.v59.12 |
[42] |
(a) Ye, H. Y.; Li, W.; Li, W. S. Chin. J. Org. Chem. 2012, 32, 266. (in Chinese)
doi: 10.6023/cjoc1104062 |
(叶怀英, 李文, 李维实, 有机化学, 2012, 32, 266.)
doi: 10.6023/cjoc1104062 |
|
(b) Shao, J. Y.; Zhong, Y. W. Chin. J. Org. Chem. 2021, 41, 1447. (in Chinese)
doi: 10.6023/cjoc202009033 |
|
(邵将洋, 钟羽武, 有机化学, 2021, 41, 1447.)
doi: 10.6023/cjoc202009033 |
|
[43] |
Choudhary, S.; Gozalvez, C.; Higelin, A.; Krossing, I.; Melle- Franco, M.; Mateo-Alonso, A. Chem.-Eur. J. 2014, 20, 1525.
doi: 10.1002/chem.201304071 pmid: 24323954 |
[44] |
Zhao, D.; Zhu, Z.; Kuo, M.-Y.; Chueh, C.-C.; Jen, A. K.-Y. Angew. Chem., Int. Ed. 2016, 55, 8999.
doi: 10.1002/anie.v55.31 |
[45] |
Zhu, R.; Li, Q.-S.; Li, Z.-S. ACS Appl. Mater. Inter. 2020, 12, 38222.
doi: 10.1021/acsami.0c10996 |
[46] |
Zhang, L. L.; Zhao, X. S. Chem. Soc. Rev. 2009, 38, 2520.
doi: 10.1039/b813846j pmid: 19690733 |
[47] |
Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Angew. Chem., Int. Ed. 2011, 50, 8753.
doi: 10.1002/anie.201103493 |
[48] |
Yan, R.; Leus, K.; Hofmann, J. P.; Antonietti, M.; Oschatz, M. Nano Energy 2020, 67, 104240.
doi: 10.1016/j.nanoen.2019.104240 |
[49] |
Manthiram, A.; Song, B.; Li, W. Energy Stor. Mater. 2017, 6, 125.
|
[50] |
Jerng, S. E.; Chang, B.; Shin, H.; Kim, H.; Lee, T.; Char, K.; Choi, J. W. ACS Appl. Mater. Inter. 2020, 12, 10597.
doi: 10.1021/acsami.0c00643 |
[1] | Hanlin Deng, Xiansheng Luo, Zhihua Li, Jiangying Zhao, Muhua Huang. Synthesis of Novel Porous Organic Materials Based on Phloroglucinol and Its Derivatives [J]. Chinese Journal of Organic Chemistry, 2021, 41(2): 624-641. |
[2] | Yuxuan Chen, Qi Chen, Zhanhui Zhang. Application of Covalent Organic Framework Materials as Heterogeneous Ligands in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2021, 41(10): 3826-3843. |
[3] | Yu Ge, Wang Cheng. Research Progress of Covalent Organic Frameworks in Sensing [J]. Chinese Journal of Organic Chemistry, 2020, 40(6): 1437-1447. |
[4] | Pang Chuming, Luo Shihe, Hao Zhifeng, Gao Jian, Huang Zhaohao, Yu Jiahai, Yu Simin, Wang Zhaoyang. Synthesis and Fluorescent Sensing Application of Porous Organic Polymer Materials [J]. Chin. J. Org. Chem., 2018, 38(10): 2606-2624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||