Chinese Journal of Organic Chemistry ›› 2021, Vol. 41 ›› Issue (11): 4361-4369.DOI: 10.6023/cjoc202107037 Previous Articles Next Articles
Special Issue: 热点论文虚拟合集
ARTICLES
刘嘉豪a, 张世冬a, 栾自鸿a, 刘艳b, 柯卓锋a,*()
收稿日期:
2021-07-16
修回日期:
2021-08-15
发布日期:
2021-08-24
通讯作者:
柯卓锋
作者简介:
基金资助:
Jiahao Liua, Shidong Zhanga, Zihong Luana, Yan Liub, Zhuofeng Kea()
Received:
2021-07-16
Revised:
2021-08-15
Published:
2021-08-24
Contact:
Zhuofeng Ke
About author:
Supported by:
Share
Jiahao Liu, Shidong Zhang, Zihong Luan, Yan Liu, Zhuofeng Ke. Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to α,β-Unsaturated Carbonyls[J]. Chinese Journal of Organic Chemistry, 2021, 41(11): 4361-4369.
Entry | Additive | Solvent | T/℃ | t/h | Yieldb/% |
---|---|---|---|---|---|
1 | — | t-AmOH | 100 | 24 | Trace |
2c | Cu(OAc)2•H2O | t-AmOH | 100 | 16 | 93 |
3d | Cu(OAc)2•H2O | t-AmOH | 100 | 16 | 93 |
4 | Cu(OAc)2•H2O | t-AmOH | 100 | 16 | 93 |
5e | Cu(OAc)2•H2O | t-AmOH | 100 | 36 | 71 |
6 | Cu(OAc)2•H2O | t-AmOH | 80 | 36 | 91 |
7 | Cu(OAc)2•H2O | t-AmOH | 60 | 48 | Trace |
8 | Cu(OAc)2•H2O | t-AmOH | r.t. | 72 | Trace |
9 | AgOAc | t-AmOH | 100 | 16 | 14f |
10 | KOAc | t-AmOH | 100 | 48 | 85 |
11 | NaOAc | t-AmOH | 100 | 36 | 72 |
12 | Na2CO3 | t-AmOH | 100 | 16 | 76 |
13 | Cu(OTf)2 | t-AmOH | 100 | 84 | 58 |
14 | Cu(OAc)2•H2O | Toluene | 100 | 84 | 68 |
15 | Cu(OAc)2•H2O | EtOH | 80 | 48 | Trace |
16 | Cu(OAc)2•H2O | H2O | 100 | 48 | Trace |
Entry | Additive | Solvent | T/℃ | t/h | Yieldb/% |
---|---|---|---|---|---|
1 | — | t-AmOH | 100 | 24 | Trace |
2c | Cu(OAc)2•H2O | t-AmOH | 100 | 16 | 93 |
3d | Cu(OAc)2•H2O | t-AmOH | 100 | 16 | 93 |
4 | Cu(OAc)2•H2O | t-AmOH | 100 | 16 | 93 |
5e | Cu(OAc)2•H2O | t-AmOH | 100 | 36 | 71 |
6 | Cu(OAc)2•H2O | t-AmOH | 80 | 36 | 91 |
7 | Cu(OAc)2•H2O | t-AmOH | 60 | 48 | Trace |
8 | Cu(OAc)2•H2O | t-AmOH | r.t. | 72 | Trace |
9 | AgOAc | t-AmOH | 100 | 16 | 14f |
10 | KOAc | t-AmOH | 100 | 48 | 85 |
11 | NaOAc | t-AmOH | 100 | 36 | 72 |
12 | Na2CO3 | t-AmOH | 100 | 16 | 76 |
13 | Cu(OTf)2 | t-AmOH | 100 | 84 | 58 |
14 | Cu(OAc)2•H2O | Toluene | 100 | 84 | 68 |
15 | Cu(OAc)2•H2O | EtOH | 80 | 48 | Trace |
16 | Cu(OAc)2•H2O | H2O | 100 | 48 | Trace |
[1] |
(a) Dobereiner, G. E.; Crabtree, R. H. Chem. Rev. 2010, 110, 681.
doi: 10.1021/cr900202j pmid: 19938813 |
(b) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Chem. Rev. 2011, 111, 1761.
doi: 10.1021/cr1003503 pmid: 19938813 |
|
(c) Kumar, A.; Bhatti, T. M.; Goldman, A. S. Chem. Rev. 2017, 117, 12357.
doi: 10.1021/acs.chemrev.7b00247 pmid: 19938813 |
|
[2] |
(a) van der Drift, R. C.; Bouwman, E.; Drent, E. J. Organomet. Chem. 2002, 650, 1.
doi: 10.1016/S0022-328X(02)01150-6 pmid: 22214981 |
(b) Uma, R.; Crévisy, C.; Grée, R. Chem. Rev. 2003, 103, 27.
doi: 10.1021/cr0103165 pmid: 22214981 |
|
(c) Cadierno, V.; Crochet, P.; Gimeno, J. Synlett 2008, 1105.
pmid: 22214981 |
|
(d) Mantilli, L.; Mazet, C. Chem. Lett. 2011, 40, 341.
doi: 10.1246/cl.2011.341 pmid: 22214981 |
|
(e) Ahlsten, N.; Bartoszewicz, A.; Martín-Matute, B. Dalton Trans. 2012, 41, 1660.
doi: 10.1039/c1dt11678a pmid: 22214981 |
|
[3] |
(a) Nakano, T.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1987, 52, 4855.
doi: 10.1021/jo00231a006 pmid: 22337651 |
(b) Adam, W.; Gelalcha, F. G.; Saha-Möller, C. R.; Stegmann, V. R. J. Org. Chem. 2000, 65, 1915.
pmid: 22337651 |
|
(c) Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. J. Org. Chem. 2001, 66, 6620.
pmid: 22337651 |
|
(d) Johnston, E. V.; Verho, O.; Kärkäs, M. D.; Shakeri, M.; Tai, C.-W.; Palmgren, P.; Eriksson, K.; Oscarsson, S.; Bäckvall, J.-E. Chem.-Eur. J. 2012, 18, 12202.
doi: 10.1002/chem.201202157 pmid: 22337651 |
|
(e) Hill-Cousins, J. T.; Kuleshova, J.; Green, R. A.; Birkin, P. R.; Pletcher, D.; Underwood, T. J.; Leach, S. G.; Brown, R. C. D. ChemSusChem 2012, 5, 326.
doi: 10.1002/cssc.201100601 pmid: 22337651 |
|
(f) Nishii, T.; Ouchi, T.; Matsuda, A.; Matsubara, Y.; Haraguchi, Y.; Kawano, T.; Kaku, H.; Horikawa, M.; Tsunoda, T. Tetrahedron Lett. 2012, 53, 5880.
doi: 10.1016/j.tetlet.2012.08.095 pmid: 22337651 |
|
(g) Xing, Y.; Li, C.; Meng, J.; Zhang, Z.; Wang, X.; Wang, Z.; Ye, Y.; Sun, K. Adv. Synth. Catal. 2021, 363, 3913.
doi: 10.1002/adsc.v363.16 pmid: 22337651 |
|
(h) Mancuso, A. J.; Swern, D. Synthesis 1981, 1981, 165.
doi: 10.1055/s-1981-29377 pmid: 22337651 |
|
[4] |
(a) Wang, G. Z.; Bäckvall, J.-E. J. Chem. Soc., Chem. Commun. 1992, 337.
pmid: 12868920 |
(b) Almeida, M. L. S.; Beller, M.; Wang, G.-Z.; Bäckvall, J.-E.; Chem.-Eur. J. 1996, 2, 1533.
doi: 10.1002/(ISSN)1521-3765 pmid: 12868920 |
|
(c) Almeida, M. L. S.; Kočovský, P.; Bäckvall, J.-E. J. Org. Chem. 1996, 61, 6587.
pmid: 12868920 |
|
(d) Nishibayashi, Y.; Yamauchi, A.; Onodera, G.; Uemura, S. J. Org. Chem. 2003, 68, 5875.
pmid: 12868920 |
|
(e) Gauthier, S.; Scopelliti, R.; Severin, K. Organometallics 2004, 23, 3769.
doi: 10.1021/om049671m pmid: 12868920 |
|
(f) Yi, C. S.; Zeczycki, T. N.; Guzei, I. A. Organometallics 2006, 25, 1047.
doi: 10.1021/om0510674 pmid: 12868920 |
|
(g) Nielsen, M.; Kammer, A.; Cozzula, D.; Junge, H.; Gladiali, S.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 9593.
doi: 10.1002/anie.201104722 pmid: 12868920 |
|
(h) Chelucci, G.; Baldino, S.; Baratta, W. Coord. Chem. Rev. 2015, 300, 29.
doi: 10.1016/j.ccr.2015.04.007 pmid: 12868920 |
|
(i) Zhang, W.; Meng, C.; Liu, Y.; Tang, Y.; Li, F. Adv. Synth. Catal. 2018, 360, 3751.
doi: 10.1002/adsc.v360.19 pmid: 12868920 |
|
(j) Udvardy, A.; Joó, F.; Kathó, Á. Coord. Chem. Rev. 2021, 438, 213871.
doi: 10.1016/j.ccr.2021.213871 pmid: 12868920 |
|
(k) Zeng, M.; Song, C.; Cui, D. Chin. J. Org. Chem. 2017, 37, 1352. (in Chinese)
doi: 10.6023/cjoc201701027 pmid: 12868920 |
|
(曾明, 宋婵, 崔冬梅, 有机化学, 2017, 37, 1352.)
doi: 10.6023/cjoc201701027 pmid: 12868920 |
|
[5] |
(a) Coleman, M. G.; Brown, A. N.; Bolton, B. A.; Guan, H. Adv. Synth. Catal. 2010, 352, 967.
doi: 10.1002/adsc.200900896 |
(b) Chakraborty, S.; Lagaditis, P. O.; Förster, M.; Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider, S. ACS Catal. 2014, 4, 3994.
doi: 10.1021/cs5009656 |
|
(c) Budweg, S.; Wei, Z.; Jiao, H.; Junge, K.; Beller, M. ChemSusChem 2019, 12, 2988.
doi: 10.1002/cssc.v12.13 |
|
(d) Chun, S.; Ahn, J.; Putta, R. R.; Lee, S. B.; Oh, D.-C.; Hong, S. J. Org. Chem. 2020, 85, 15314.
doi: 10.1021/acs.joc.0c02145 |
|
(e) Budweg, S.; Junge, K.; Beller, M. Catal. Sci. Technol. 2020, 10, 3825.
doi: 10.1039/D0CY00699H |
|
[6] |
(a) Suzuki, T.; Morita, K.; Tsuchida, M.; Hiroi, K. J. Org. Chem. 2003, 68, 1601.
doi: 10.1021/jo0262560 |
(b) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2004, 23, 1490.
doi: 10.1021/om049918f |
|
(c) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2005, 24, 3422.
doi: 10.1021/om0503545 |
|
(d) Hanasaka, F.; Fujita, K.; Yamaguchi, R. Organometallics 2006, 25, 4643.
doi: 10.1021/om060475k |
|
(e) Fujita, K.; Yoshida, T.; Imori, Y.; Yamaguchi, R. Org. Lett. 2011, 13, 2278.
doi: 10.1021/ol2005424 |
|
(f) Musa, S.; Shaposhnikov, I.; Cohen, S.; Gelman, D. Angew. Chem., Int. Ed. 2011, 50, 3533.
doi: 10.1002/anie.201007367 |
|
(g) Polukeev, A. V.; Petrovskii, P. V.; Peregudov, A. S.; Ezernitskaya, M. G.; Koridze, A. A. Organometallics 2013, 32, 1000.
doi: 10.1021/om300921q |
|
(h) Shi, Y.; Suguri, T.; Kojima, S.; Yamamoto, Y. J. Organomet. Chem. 2015, 799-800, 7.
|
|
(i) Polukeev, A. V.; Wendt, O. F. Organometallics 2017, 36, 639.
doi: 10.1021/acs.organomet.6b00846 |
|
[7] |
(a) Join, B.; Möller, K.; Ziebart, C.; Schröder, K.; Gördes, D.; Thurow, K.; Spannenberg, A.; Junge, K.; Beller, M. Adv. Synth. Catal. 2011, 353, 3023.
doi: 10.1002/adsc.v353.16 |
(b) Könning, D.; Olbrisch, T.; Sypaseuth, F. D.; Tzschucke, C. C.; Christmann, M. Chem. Commun. 2014, 50, 5014.
doi: 10.1039/C4CC01305K |
|
[8] |
(a) Oppenauer, R. V. Recl. Trav. Chim. Pays-Bas 1937, 56, 137.
doi: 10.1002/recl.v56:2 |
(b) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
|
|
(c) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712.
doi: 10.1126/science.1229712 |
|
(d) Song, H.; Kang, B.; Hong, S. H. ACS Catal. 2014, 4, 2889.
doi: 10.1021/cs5007316 |
|
(e) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem., Int. Ed. 2016, 55, 862.
doi: 10.1002/anie.201507521 |
|
(f) Kallmeier, F.; Kempe, R. Angew. Chem., Int. Ed. 2018, 57, 46.
doi: 10.1002/anie.201709010 |
|
(g) Huang, M.; Liu, J.; Li, Y.; Lan, X.-B.; Su, P.; Zhao, C.; Ke, Z. Catal. Today 2020.
|
|
[9] |
(a) Dobson, A.; Robinson, S. D. Inorg. Chem. 1977, 16, 137.
doi: 10.1021/ic50167a029 pmid: 28051854 |
(b) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv. Synth. Catal. 2007, 349, 1555.
doi: 10.1002/(ISSN)1615-4169 pmid: 28051854 |
|
(c) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635.
doi: 10.1126/science.1191843 pmid: 28051854 |
|
(d) Guillena, G.; Ramon, D. J.; Yus, M. Chem. Rev. 2010, 110, 1611.
doi: 10.1021/cr9002159 pmid: 28051854 |
|
(e) Johnson, T. C.; Morris, D. J.; Wills, M. Chem. Soc. Rev. 2010, 39, 81.
doi: 10.1039/b904495g pmid: 28051854 |
|
(f) Trincado, M.; Banerjee, D.; Grützmacher, H. Energy Environ. Sci. 2014, 7, 2464.
doi: 10.1039/C4EE00389F pmid: 28051854 |
|
(g) Kim, S. W.; Zhang, W.; Krische, M. J. Acc. Chem. Res. 2017, 50, 2371.
doi: 10.1021/acs.accounts.7b00308 pmid: 28051854 |
|
(h) Chelucci, G. Coord. Chem. Rev. 2017, 331, 1.
doi: 10.1016/j.ccr.2016.10.002 pmid: 28051854 |
|
(i) Crabtree, R. H. Chem. Rev. 2017, 117, 9228.
doi: 10.1021/acs.chemrev.6b00556 pmid: 28051854 |
|
(j) Corma, A.; Navas, J.; Sabater, M. J. Chem. Rev. 2018, 118, 1410.
doi: 10.1021/acs.chemrev.7b00340 pmid: 28051854 |
|
(k) Hu, B.; Zhang, Y.; Yin, G.; Chen, D. Chin. J. Org. Chem. 2020, 40, 53. (in Chinese)
doi: 10.6023/cjoc201908017 pmid: 28051854 |
|
(胡博文, 张宇哲, 尹鸽平, 陈大发, 有机化学, 2020, 40, 53.)
doi: 10.6023/cjoc201908017 pmid: 28051854 |
|
(l) Wang, C.; Xiao, J. Chin. J. Org. Chem. 2020, 40, 2182. (in Chinese)
doi: 10.6023/cjoc202000045 pmid: 28051854 |
|
(王超, 肖建良, 有机化学, 2020, 40, 2182.)
doi: 10.6023/cjoc202000045 pmid: 28051854 |
|
(m) Hao, Z.; Liu, K.; Feng, Q.; Dong, Q.; Ma, D.; Han, Z.; Lu, G.-L.; Lin, J. Chin. J. Chem. 2021, 39, 121.
doi: 10.1002/cjoc.v39.1 pmid: 28051854 |
|
[10] |
(a) Choi, J. H.; Kim, N.; Shin, Y. J.; Park, J. H.; Park, J. Tetrahedron Lett. 2004, 45, 4607.
doi: 10.1016/j.tetlet.2004.04.113 |
(b) Kim, W.-H.; Park, I. S.; Park, J. Org. Lett. 2006, 8, 2543.
doi: 10.1021/ol060750z |
|
(c) Mitsudome, T.; Mikami, Y.; Funai, H.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew. Chem., Int. Ed. 2008, 47, 138.
doi: 10.1002/(ISSN)1521-3773 |
|
(d) Mitsudome, T.; Mikami, Y.; Ebata, K.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Chem. Commun. 2008, 4804.
|
|
(e) Shimizu, K.; Sugino, K.; Sawabe, K.; Satsuma, A. Chem.-Eur. J. 2009, 15, 2341.
doi: 10.1002/chem.v15:10 |
|
(f) Fang, W.; Chen, J.; Zhang, Q.; Deng, W.; Wang, Y. Chem.-Eur. J. 2011, 17, 1247.
doi: 10.1002/chem.v17.4 |
|
(g) Marella, R. K.; Prasad Neeli, C. K.; Rao Kamaraju, S. R.; Burri, D. R. Catal. Sci. Technol. 2012, 2, 1833.
doi: 10.1039/c2cy20222k |
|
(h) Shimizu, K.; Kon, K.; Seto, M.; Shimura, K.; Yamazaki, H.; Kondo, J. N. Green Chem. 2013, 15, 418.
doi: 10.1039/C2GC36555C |
|
(i) Shimizu, K.; Kon, K.; Shimura, K.; Hakim, S. S. M. A. J. Catal. 2013, 300, 242.
doi: 10.1016/j.jcat.2013.01.005 |
|
(j) Kon, K.; Hakim Siddiki, S. M. A.; Shimizu, K. J. Catal. 2013, 304, 63.
doi: 10.1016/j.jcat.2013.04.003 |
|
(k) Yi, J.; Miller, J. T.; Zemlyanov, D. Y.; Zhang, R.; Dietrich, P. J.; Ribeiro, F. H.; Suslov, S.; Abu-Omar, M. M. Angew. Chem., Int. Ed. 2014, 53, 833.
doi: 10.1002/anie.201307665 |
|
(l) Chen, J.; Fang, W.; Zhang, Q.; Deng, W.; Wang, Y. Chem. Asian J. 2014, 9, 2187.
doi: 10.1002/asia.v9.8 |
|
(m) González Miera, G.; Martínez-Castro, E.; Martín-Matute, B. Organometallics 2018, 37, 636.
doi: 10.1021/acs.organomet.7b00220 |
|
[11] |
Ren, K.; Hu, B.; Zhao, M.; Tu, Y.; Xie, X.; Zhang, Z. J. Org. Chem. 2014, 79, 2170.
doi: 10.1021/jo500042h |
[12] |
(a) Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468.
doi: 10.1021/acscatal.5b00952 |
(b) Hou, C.; Zhang, Z.; Zhao, C.; Ke, Z. Inorg. Chem. 2016, 55, 6539.
doi: 10.1021/acs.inorgchem.6b00723 |
|
(c) Wang, Q.; Chai, H.; Yu, Z. Organometallics 2017, 36, 3638.
doi: 10.1021/acs.organomet.7b00587 |
|
[13] |
(a) Soai, K.; Yokoyama, S.; Mochida, K. Synthesis 1987, 1987, 647.
doi: 10.1055/s-1987-28035 |
(b) Håkansson, A. E.; Palmelund, A.; Holm, H.; Madsen, R. Chem.- Eur. J. 2006, 12, 3243.
doi: 10.1002/(ISSN)1521-3765 |
|
[14] |
Zhu, Y.; Colomer, I.; Donohoe, T. J. Chem. Commun. 2019, 55, 10316.
doi: 10.1039/C9CC04383G |
[15] |
Krätzschmar, F.; Kaßel, M.; Delony, D.; Breder, A. Chem.-Eur. J. 2015, 21, 7030.
doi: 10.1002/chem.201406290 pmid: 25808950 |
[16] |
Papa Spadafora, B.; Moreira Ribeiro, F. W.; Matsushima, J. E.; Ariga, E. M.; Omari, I.; Soares, P. M. A.; de Oliveira-Silva, D.; Vinhato, E.; McIndoe, J. S.; Carita Correra, T.; Rodrigues, A. Org. Biomol. Chem. 2021, 19, 5595.
doi: 10.1039/d1ob00670c pmid: 34096563 |
[17] |
Hu, D. X.; Shibuya, G. M.; Burns, N. Z. J. Am. Chem. Soc. 2013, 135, 12960.
doi: 10.1021/ja4083182 |
[18] |
Talwar, D.; Wu, X.; Saidi, O.; Salguero, N. P.; Xiao, J. Chem.-Eur. J. 2014, 20, 12835.
doi: 10.1002/chem.201403701 |
[19] |
Cignarella, G.; Occelli, E.; Testa, E. J. Med. Chem. 1965, 8, 326.
doi: 10.1021/jm00327a010 |
[20] |
Tomita, R.; Mantani, K.; Hamasaki, A.; Ishida, T.; Tokunaga, M. Chem.-Eur. J. 2014, 20, 9914.
doi: 10.1002/chem.201403373 pmid: 24957504 |
[21] |
Balcells, S.; Haughey, M. B.; Walker, J. C. L.; Josa-Culleré, L.; Towers, C.; Donohoe, T. J. Org. Lett. 2018, 20, 3583.
doi: 10.1021/acs.orglett.8b01370 pmid: 29863350 |
[22] |
Li, H.; Chen, H.; Zhou, Y.; Huang, J.; Yi, J.; Zhao, H.; Wang, W.; Jing, L. Chem. Asian J. 2020, 15, 555.
doi: 10.1002/asia.v15.5 |
[23] |
Wang, R.; Tang, Y.; Xu, M.; Meng, C.; Li, F. J. Org. Chem. 2018, 83, 2274.
doi: 10.1021/acs.joc.7b03174 |
[24] |
Li, C.; Chen, H.; Li, J.; Li, M.; Liao, J.; Wu, W.; Jiang, H. Adv. Synth. Catal. 2018, 360, 1600.
doi: 10.1002/adsc.v360.8 |
[25] |
Meiß, R.; Kumar, K.; Waldmann, H. Chem.-Eur. J. 2015, 21, 13526.
doi: 10.1002/chem.201502843 |
[26] |
Yang, Y.; Jiang, J.; Qimei, L.; Yan, X.; Zhao, J.; Yuan, H.; Qin, Z.; Wang, M. Molecules 2010, 15, 7075.
doi: 10.3390/molecules15107075 pmid: 20944522 |
[27] |
Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842.
doi: 10.1021/ja044054a |
[28] |
Kim, D. E.; Kwak, J.; Kim, I. S.; Jeong, N. Adv. Synth. Catal. 2009, 351, 97.
doi: 10.1002/adsc.200800657 |
[29] |
Liu, J.; Zhu, J.; Jiang, H.; Wang, W.; Li, J. Chem. Commun. 2010, 46, 415.
doi: 10.1039/B922351G |
[30] |
Susanto, W.; Chu, C.-Y.; Ang, W. J.; Chou, T.-C.; Lo, L.-C.; Lam, Y. J. Org. Chem. 2012, 77, 2729.
doi: 10.1021/jo202482h pmid: 22372634 |
[31] |
Zhang, Z.; Wang, Q.; Chen, C.; Han, Z.; Dong, X.-Q.; Zhang, X. Org. Lett. 2016, 18, 3290.
doi: 10.1021/acs.orglett.6b01605 |
[32] |
Chen, X.; Zhang, Y.; Wan, H.; Wang, W.; Zhang, S. Chem. Commun. 2016, 52, 3532.
doi: 10.1039/C5CC10093C |
[33] |
Ahmed, M.; Brand, H. E. A.; Peterson, V. K.; Clegg, J. K.; Kepert, C. J.; Price, J. R.; Powell, B. J.; Neville, S. M. Dalton Trans. 2021, 50, 1434.
doi: 10.1039/D0DT04007J |
[34] |
Chavhan, S. W.; Cook, M. J. Chem.-Eur. J. 2014, 20, 4891.
doi: 10.1002/chem.201400104 pmid: 24677380 |
[35] |
Zhang, X.-W.; Jiang, G.-Q.; Lei, S.-H.; Shan, X.-H.; Qu, J.-P.; Kang, Y.-B. Org. Lett. 2021, 23, 1611.
doi: 10.1021/acs.orglett.1c00043 |
[36] |
An, X.-L.; Chen, J.-R.; Li, C.-F.; Zhang, F.-G.; Zou, Y.-Q.; Guo, Y.-C.; Xiao, W.-J. Chem. Asian J. 2010, 5, 2258.
doi: 10.1002/asia.201000315 |
[37] |
Guo, S.-H.; Xing, S.-Z.; Mao, S.; Gao, Y.-R.; Chen, W.-L.; Wang, Y.-Q. Tetrahedron Lett. 2014, 55, 6718.
doi: 10.1016/j.tetlet.2014.10.019 |
[38] |
Zhang, G.; Han, X.; Luan, Y.; Wang, Y.; Wen, X.; Ding, C. Chem. Commun. 2013, 49, 7908.
doi: 10.1039/c3cc44122a |
[39] |
You, S.; Zhang, R.; Cai, M. Synthesis 2021, 53, 1962.
doi: 10.1055/s-0040-1706621 |
[40] |
Yu, C.-W.; Chen, G. S.; Huang, C.-W.; Chern, J.-W. Org. Lett. 2012, 14, 3688.
doi: 10.1021/ol301523q |
[41] |
Tigineh, G. T.; Liu, L.-K. J. Chin. Chem. Soc. 2019, 66, 1729.
doi: 10.1002/jccs.v66.12 |
[42] |
Yu, B.; Zhao, Y.; Zhang, H.; Xu, J.; Hao, L.; Gao, X.; Liu, Z. Chem. Commun. 2014, 50, 2330.
doi: 10.1039/c3cc49365b |
[43] |
Chen, X.-Y.; Sorensen, E. J. J. Am. Chem. Soc. 2018, 140, 2789.
doi: 10.1021/jacs.8b00048 |
[44] |
Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014, 16, 1108.
doi: 10.1021/ol4037083 |
[45] |
Konishi, H.; Kumon, M.; Yamaguchi, M.; Manabe, K. Tetrahedron 2020, 76, 131639.
doi: 10.1016/j.tet.2020.131639 |
[46] |
Troxler, F.; Harnisch, A.; Bormann, G.; Seemann, F.; Szabo, L. Helv. Chim. Acta 1968, 51, 1616.
doi: 10.1002/hlca.19680510717 |
[1] | Yan Tian, Rui Dong, Peng Nie, Bo Xu. Synthesis and Characterization of Ruthenium Germyl Complexes with Various Substituents [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 173-179. |
[2] | Yue Zhu, Lu Chen, Jing Zhao, Qingrong Sun, Weiqing Yang, Haiyan Fu, Menglin Ma. Synthesis of Quinoline Derivatives by Friedländer Reaction Catalyzed by Ruthenium Complexes of Substituted 8-Hydroxyquinoline [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2528-2542. |
[3] | Nan Jiang, Guanjie Huang, Yan Hu, Bo Wang. Ruthenium-Catalyzed C—H [4+2] Annulation of Quinazolinones with Vinylene Carbonate [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1537-1549. |
[4] | Mei Wang, Huihua Gong, Haiyan Fu, Xueli Zheng, Hua Chen, Ruixiang Li. Ruthenium Complex-Catalyzed Tandem Reactions of Alcohols with Acetonitriles for Synthesis of α-Substituted Amides [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2418-2427. |
[5] | Zengjin Dai, Xumu Zhang, Qin Yin. Advances on Asymmetric Reductive Amination with Ammonium Salts as Amine Sources [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2261-2274. |
[6] | Tao Li, Yi Liu, Xue Bai, Zunjun Zhou, Peng Zuo, Miaofeng Ma, Chong-Min Zhong, Ya-Jie Zuo. Preparation of Imidazolium Ion Functionalized HG-II Chiral Ruthenium Catalysts and Their Catalytic Performance in Asymmetric Olefin Metathesis [J]. Chinese Journal of Organic Chemistry, 2022, 42(6): 1713-1721. |
[7] | Xiaolong Fang, Bin Li, Jie Jin, Ning Duan. Homogeneous Catalytic Hydrogenation of Dimethyl Malonate into 1,3-Propanediol [J]. Chinese Journal of Organic Chemistry, 2022, 42(5): 1407-1413. |
[8] | Xinyu Wang, Qihuan Li, Tingbin Wen. Ruthenium-Catalyzed Oxygenative Transformation of Terminal Propargyl Alcohols to Metheyleneketenes via Allenylidene Intermedia-tes: Synthesis ofα,β-Unsaturated Carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2021, 41(1): 284-296. |
[9] | Fang Xiaolong, Duan Ning, Zhang Min, Li Bin. Advances for Ruthenium Catalysts with Metal-Ligand Cooperation for Hydrogenation of Oxalates into Ethylene Glycol [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2692-2701. |
[10] | Wang Su, Zhang Youlu, Ba Yanyan, Zhang Jingyu, Sun Demei. Study and Applications of Stereoselective Olefin Metathesis Reactions [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2725-2741. |
[11] | Ma Xiantao, Yu Jing, Wang Zilong, Zhang Yun, Zhou Qiuju. Efficient Activation of Allylic Alcohols in Pd-Catalyzed Allylic Substitution Reactions [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2669-2677. |
[12] | Lin Cong, Gao Zhenbo, Teng Qiuxun, Xue Bowen, Li Xiaohua, Gao Fei, Shen Liang. Synthesis of Vinyl-Substituted Dihydroisoquinolone via Ru(II)-Catalyzed C—H Functionalization/Annulation of Imidates [J]. Chinese Journal of Organic Chemistry, 2020, 40(9): 2863-2870. |
[13] | Fang Xiaolong, Zhang Min, Duan Ning, Wang Xin, Zhu Hongping. Synthesis and Catalytic Property of New Aminophosphino Ruthenium Carbonyl Complexes [J]. Chinese Journal of Organic Chemistry, 2020, 40(1): 226-231. |
[14] | Hu Bowen, Zhang Yuzhe, Yin Geping, Chen Dafa. Half-Sandwich Ruthenium(II) Complexes with Bidentate NN Ligands:Active Catalysts for the Synthesis of Quinolines and Pyrroles by Acceptorless Dehydrogenative Cyclization [J]. Chinese Journal of Organic Chemistry, 2020, 40(1): 53-60. |
[15] | Wang Qiushi, Xie Jianhua, Zhou Qilin. Ruthenium Catalyzed Highly Chemo-and Regio-selective Codimerization of N-Acetyl α-Arylethenamines with Vinylarenes [J]. Chin. J. Org. Chem., 2019, 39(8): 2264-2269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||