Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (8): 2913-2925.DOI: 10.6023/cjoc202303004 Previous Articles Next Articles
Special Issue: 有机氟化学虚拟合辑
冯莹珂, 王贺*(), 崔梦行, 孙然, 王欣, 陈阳, 李蕾*()
收稿日期:
2023-03-01
修回日期:
2023-04-03
发布日期:
2023-04-07
基金资助:
Yingke Feng, He Wang(), Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li()
Received:
2023-03-01
Revised:
2023-04-03
Published:
2023-04-07
Contact:
*E-mail: Supported by:
Share
Yingke Feng, He Wang, Mengxing Cui, Ran Sun, Xin Wang, Yang Chen, Lei Li. Visible-Light-Induced Difluoroalkylated Cyclization of Novel Functionalized Aromatic Isocyanides[J]. Chinese Journal of Organic Chemistry, 2023, 43(8): 2913-2925.
Entry | Catalyst | Base | Solvent | Yieldb/% |
---|---|---|---|---|
1 | fac-Ir(ppy)3 | Na2HPO4 | DMF | 51 |
2 | fac-Ir(ppy)3 | NaHCO3 | DMF | 62 |
3 | fac-Ir(ppy)3 | KHCO3 | DMF | 42 |
4 | fac-Ir(ppy)3 | Na2CO3 | DMF | 32 |
5 | fac-Ir(ppy)3 | Cs2CO3 | DMF | 26 |
6 | fac-Ir(ppy)3 | Et3N | DMF | 27 |
7 | fac-Ir(ppy)3 | 2,6-Lutidine | DMF | 53 |
8 | fac-Ir(ppy)3 | DBU | DMF | 7 |
9 | fac-Ir(ppy)3 | NaHCO3 | DCM | 19 |
10 | fac-Ir(ppy)3 | NaHCO3 | CH3CN | 14 |
11 | fac-Ir(ppy)3 | NaHCO3 | DMAc | 47 |
12 | fac-Ir(ppy)3 | NaHCO3 | DMSO | 27 |
13 | fac-Ir(ppy)3 | NaHCO3 | THF | 45 |
14 | fac-Ir(ppy)3 | NaHCO3 | Toluene | 42 |
15 | Ru(bpy)3Cl2•6H2O | NaHCO3 | DMF | 8 |
16 | 4CzIPN | NaHCO3 | DMF | 22 |
17 | Eosin Y | NaHCO3 | DMF | Trace |
18 | Methylene Blue | NaHCO3 | DMF | 10 |
19 | fac-Ir(ppy)3 | — | DMF | 24 |
20 | — | NaHCO3 | DMF | 8 |
21c | fac-Ir(ppy)3 | NaHCO3 | DMF | 0 |
22d | fac-Ir(ppy)3 | NaHCO3 | DMF | 50 |
23e | fac-Ir(ppy)3 | NaHCO3 | DMF | 43 |
Entry | Catalyst | Base | Solvent | Yieldb/% |
---|---|---|---|---|
1 | fac-Ir(ppy)3 | Na2HPO4 | DMF | 51 |
2 | fac-Ir(ppy)3 | NaHCO3 | DMF | 62 |
3 | fac-Ir(ppy)3 | KHCO3 | DMF | 42 |
4 | fac-Ir(ppy)3 | Na2CO3 | DMF | 32 |
5 | fac-Ir(ppy)3 | Cs2CO3 | DMF | 26 |
6 | fac-Ir(ppy)3 | Et3N | DMF | 27 |
7 | fac-Ir(ppy)3 | 2,6-Lutidine | DMF | 53 |
8 | fac-Ir(ppy)3 | DBU | DMF | 7 |
9 | fac-Ir(ppy)3 | NaHCO3 | DCM | 19 |
10 | fac-Ir(ppy)3 | NaHCO3 | CH3CN | 14 |
11 | fac-Ir(ppy)3 | NaHCO3 | DMAc | 47 |
12 | fac-Ir(ppy)3 | NaHCO3 | DMSO | 27 |
13 | fac-Ir(ppy)3 | NaHCO3 | THF | 45 |
14 | fac-Ir(ppy)3 | NaHCO3 | Toluene | 42 |
15 | Ru(bpy)3Cl2•6H2O | NaHCO3 | DMF | 8 |
16 | 4CzIPN | NaHCO3 | DMF | 22 |
17 | Eosin Y | NaHCO3 | DMF | Trace |
18 | Methylene Blue | NaHCO3 | DMF | 10 |
19 | fac-Ir(ppy)3 | — | DMF | 24 |
20 | — | NaHCO3 | DMF | 8 |
21c | fac-Ir(ppy)3 | NaHCO3 | DMF | 0 |
22d | fac-Ir(ppy)3 | NaHCO3 | DMF | 50 |
23e | fac-Ir(ppy)3 | NaHCO3 | DMF | 43 |
[1] |
(a) Shiri, M. Chem. Rev. 2012, 112, 3508.
doi: 10.1021/cr2003954 pmid: 32141467 |
(b) Sharma, U. K.; Sharma, N.; Vachhani, D. D.; Eycken, E. V. Chem. Soc. Rev. 2015, 44, 1836.
doi: 10.1039/C4CS00253A pmid: 32141467 |
|
(c) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596.
doi: 10.1021/cr300389u pmid: 32141467 |
|
(d) Xu, Z.; Wang, Q.; Zhu, J. Chem. Soc. Rev. 2018, 47, 7882.
doi: 10.1039/C8CS00454D pmid: 32141467 |
|
(e) Tanifuji, R.; Minami, A.; Oguri, H.; Oikawa, H. Nat. Prod. Rep. 2020, 37, 1098.
doi: 10.1039/c9np00073a pmid: 32141467 |
|
[2] |
(a) Ho, C. Y. US 4529724A, 1985.
pmid: 10425100 |
(b) Ho, C. Y.; Hageman, W. E.; Pérsico, F. J. 1986, 29, 1118.
pmid: 10425100 |
|
(c) Schultz, C.; Link, A.; Leost, M.; Zaharevitz, D. W.; Gussio, R.; Sausville, E. A.; Meijer, L.; Kunick, C. J. Med. Chem. 1999, 42, 2909.
pmid: 10425100 |
|
(d) Beke, G.; Eles, J.; Boros, A.; Farkas, S.; Keseru, G. M. WO 2016/166684A1, 2016.
pmid: 10425100 |
|
[3] |
(a) Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 3535.
doi: 10.1021/ol801383b pmid: 26735127 |
(b) Hua, H.-L.; Zhang, B.-S.; He, Y.-T.; Qiu, Y.-F.; Wu, X.-X.; Xu, P.-F.; Liang, Y.-M. Org. Lett. 2016, 18, 216.
doi: 10.1021/acs.orglett.5b03329 pmid: 26735127 |
|
(c) Thikekar, T. U.; Selvaraju, M.; Sun, C.-M. Org. Lett. 2016, 18, 316.
doi: 10.1021/acs.orglett.5b03481 pmid: 26735127 |
|
(d) Thikekar, T. U.; Sun, C.-M. Adv. Synth. Catal. 2017, 359, 3388.
doi: 10.1002/adsc.v359.19 pmid: 26735127 |
|
(e) Wang, S.; Shen, Y.-B.; Li, L.-F.; Qiu, B.; Yu, L.; Liu, Q.; Xiao, J. Org. Lett. 2019, 21, 8904.
doi: 10.1021/acs.orglett.9b03011 pmid: 26735127 |
|
(f) Dhole, S.; Chiu, W.-J.; Sun, C.-M. Adv. Synth. Catal. 2019, 361, 2916.
doi: 10.1002/adsc.v361.12 pmid: 26735127 |
|
(g) Wang, S.; Wang, S.; Song, S.; Gao, Q.; Wen, C.; Zhang, Z.; Zheng, L.; Xiang, J. J. Org. Chem. 2021, 86, 6458.
doi: 10.1021/acs.joc.1c00303 pmid: 26735127 |
|
(h) Ma, C.; Wang, Y.; Chen, G.; Li, J.; Jiang, Y.; Zhang, X.; Fan, X. Org. Chem. Front. 2022, 9, 4663.
doi: 10.1039/D2QO00779G pmid: 26735127 |
|
(i) Hao, Y.; Zhou, P.; Niu, K.; Song, H.; Liu, Y.; Zhang, J.; Wang, Q. Adv. Synth. Catal. 2022, 364, 281.
doi: 10.1002/adsc.v364.2 pmid: 26735127 |
|
[4] |
(a) Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95.
doi: 10.1021/ar00064a001 |
(b) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic Chemistry, University Science Books, Herndon, VA, 2005.
|
|
[5] |
Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234.
doi: 10.1002/anie.201006515 |
[6] |
Song, B.; Xu, B. Chem. Soc. Rev. 2017, 46, 1103.
doi: 10.1039/C6CS00384B |
[7] |
(a) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505.
doi: 10.1039/c5cs00083a pmid: 27934497 |
(b) Wang, C.-H.; Li, Y.-H.; Yang, S.-D. Org. Lett. 2018, 20, 2382.
doi: 10.1021/acs.orglett.8b00722 pmid: 27934497 |
|
(c) Liu, Y.; Li, J.-L.; Liu, X.-G.; Wu, J.-Q.; Huang, Z.-S.; Li, Q.; Wang, H. Org. Lett. 2021, 23, 1891.
doi: 10.1021/acs.orglett.1c00309 pmid: 27934497 |
|
(d) Ye, H.-B.; Zhou, X.-Y.; Li, L.; He, X.-K.; Xuan, J. Org. Lett. 2022, 24, 6018.
doi: 10.1021/acs.orglett.2c02313 pmid: 27934497 |
|
(e) Xiao, P.; Rong, J.; Ni, C.; Guo, J.; Li, X.; Chen, D.; Hu, J. Org. Lett. 2016, 18, 5912.
pmid: 27934497 |
|
(f) Rong, J.; Deng, L.; Tan, T.; Ni, C.; Gu, Y.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 2743.
doi: 10.1002/anie.201510533 pmid: 27934497 |
|
[8] |
(a) Mitamura, T.; Iwata, K.; Ogawa, A. Org. Lett. 2009, 11, 3422.
doi: 10.1021/ol901267h |
(b) Mitamura, T.; Ogawa, A. J. Org. Chem. 2011, 76, 1163.
doi: 10.1021/jo1021772 |
|
[9] |
(a) Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem. 2010, 75, 4841.
doi: 10.1021/jo101024f |
(b) Tobisu, M.; Koh, K.; Furukawa, T.; Chatani, N. Angew. Chem. 2012, 124, 11525.
doi: 10.1002/ange.201206115 |
|
[10] |
(a) Zhang, B.; Studer, A. Org. Lett. 2014, 16, 1216.
doi: 10.1021/ol5001395 pmid: 28976201 |
(b) Leifert, D.; Studer, A. Angew. Chem., Int. Ed. 2016, 55, 11660.
doi: 10.1002/anie.201606023 pmid: 28976201 |
|
(c) Wang, L.; Studer, A. Org. Lett. 2017, 19, 5701.
doi: 10.1021/acs.orglett.7b02882 pmid: 28976201 |
|
[11] |
(a) Evoniuk, C. J.; Ly, M.; Alabugin, I. V. Chem. Commun. 2015, 51, 12831.
doi: 10.1039/C5CC04391C |
(b) Evoniuk, C. J.; Gomes, G. D. P.; Ly, M.; White, F. D.; Alabugin, I. V. J. Org. Chem. 2017, 82, 4265.
doi: 10.1021/acs.joc.7b00262 |
|
(c) Gomes, G. D. P.; Evoniuk, C. J.; Ly, M.; Alabugin, I. V. Org. Biomol. Chem. 2017, 15, 4135.
doi: 10.1039/C7OB00527J |
|
[12] |
(a) Li, D.; Mao, T.; Huang, J.; Zhu, Q. Org. Lett. 2017, 19, 3223.
doi: 10.1021/acs.orglett.7b01339 pmid: 28981293 |
(b) Tang, S.; Wang, J.; Xiong, Z., Xie, Z.; Li, D.; Huang, J.; Zhu, Q. Org. Lett. 2017, 19, 5577.
doi: 10.1021/acs.orglett.7b02725 pmid: 28981293 |
|
(c) Teng, F.; Hu, W.; Hu, H.; Luo, S.; Zhu, Q. Adv. Synth. Catal. 2019, 361, 1414.
doi: 10.1002/adsc.201801623 pmid: 28981293 |
|
[13] |
(a) Jiang, H.; Cheng, Y.; Wang, R.; Zheng, M.; Zhang, Y.; Yu, S. Angew. Chem. 2013, 125, 13531.
doi: 10.1002/ange.201308376 |
(b) Jiang, H.; Cheng, Y.; Wang, R.; Zhang, Y.; Yu, S. Chem. Commun. 2014, 50, 6164.
doi: 10.1039/c4cc01122h |
|
(c) Tong, K.; Zheng, T.; Zhang, Y.; Yu, S. Adv. Synth. Catal. 2015, 357, 3681.
doi: 10.1002/adsc.v357.16/17 |
|
[14] |
(a) Hu, Z.; Yuan, H.; Men, Y.; Liu, Q.; Zhang, J.; Xu, X. Angew. Chem., Int. Ed. 2016, 55, 7077.
doi: 10.1002/anie.201600257 |
(b) Gao, Y.; Hu, Z.; Dong, J.; Liu, J.; Xu, X. Org. Lett. 2017, 19, 5292.
doi: 10.1021/acs.orglett.7b02582 |
|
(c) Hu, Z.; Dong, J.; Men, Y.; Lin, Z.; Cai, J.; Xu, X. Angew. Chem., Int. Ed. 2017, 56, 1805.
doi: 10.1002/anie.201611024 |
|
(d) Cai, J.; Hu, Z.; Li, Y.; Liu, J.; Xu, X. Adv. Synth. Catal. 2018, 360, 3595.
doi: 10.1002/adsc.v360.18 |
|
[15] |
(a) Xu, P.; Zhu, Y.-M.; Wang, F.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2019, 21, 683.
doi: 10.1021/acs.orglett.8b03868 |
(b) Xu, P.; Zhu, Y.-M.; Liu, X.-Y.; Zhou, X.-Z.; Wang, S.-Y.; Ji, S.-J. Chin. Chem. Lett. 2021, 32, 413.
doi: 10.1016/j.cclet.2020.03.023 |
|
(c) Jiang, S.; Cao, W.-B.; Xu, X.-P.; Ji, S.-J. Org. Lett. 2021, 23, 6740.
doi: 10.1021/acs.orglett.1c02316 |
|
[16] |
(a) Vidyasagar, A.; Shi, J.; Kreitmeier, P.; Reiser, O. Org. Lett. 2018, 20, 6984.
doi: 10.1021/acs.orglett.8b02725 pmid: 30588818 |
(b) Yang, W.-C.; Wei, K.; Sun, X.; Zhu, J.; Wu, L. Org. Lett. 2018, 20, 3144.
doi: 10.1021/acs.orglett.8b01278 pmid: 30588818 |
|
(c) Yuan, Y.; Dong, W.; Gao, X.; Xie, X.; Zhang, Z. Org. Lett. 2019, 21, 469.
doi: 10.1021/acs.orglett.8b03710 pmid: 30588818 |
|
(d) Liu, Y.; Li, S.-J.; Chen, X.-L.; Fan, L.-L.; Li, X.-Y.; Zhu, S.-S.; Qu, L.-B.; Yu, B. Adv. Synth. Catal. 2020, 362, 688.
doi: 10.1002/adsc.v362.3 pmid: 30588818 |
|
(e) Mao, S.; Wang, H.; Liu, L.; Wang, X.; Zhou, M.-D.; Li, L. Adv. Synth. Catal. 2020, 362, 2274.
doi: 10.1002/adsc.v362.11 pmid: 30588818 |
|
(f) Liu, Y.; Chen, X.-L.; Li, X.-Y.; Zhu, S.-S.; Li, S.-J.; Song, Y.; Qu, L.-B.; Yu, B. J. Am. Chem. Soc. 2021, 143, 964.
doi: 10.1021/jacs.0c11138 pmid: 30588818 |
|
(g) Liu, L.; Li, L.; Wang, X.; Sun, R.; Zhou, M.-D.; Wang, H. Org. Lett. 2021, 23, 5826.
doi: 10.1021/acs.orglett.1c01979 pmid: 30588818 |
|
(h) Liu, J.; Li, L.; Bu, X.; Yuan, Y.; Wang, X.; Sun, R.; Zhou, M.-D.; Wang, H. Org. Chem. Front. 2022, 9, 2486.
doi: 10.1039/D2QO00271J pmid: 30588818 |
|
[17] |
(a) Hu, W.; Teng, F.; Hu, H.; Luo, S.; Zhu, Q. J. Org. Chem. 2019, 84, 6524.
doi: 10.1021/acs.joc.9b00683 pmid: 35696658 |
(b) Hu, W.; Wang, X.; Peng, Y.; Luo, S.; Zhao, J.; Zhu, Q. Org. Lett. 2022, 24, 3642.
doi: 10.1021/acs.orglett.2c01217 pmid: 35696658 |
|
(c) Wang, J.; Ren, P.; Gu, G.; Jiang, Z.; Xiang, B.; Tang, S.; Jia, A.-Q. J. Org. Chem. 2022, 87, 9663.
doi: 10.1021/acs.joc.2c00717 pmid: 35696658 |
|
(d) Yuan, S.; Liu, Y.; Ni, M.; Hao, T.; Peng, Y.; Ding, Q. Chem. Commun. 2022, 58, 10985.
doi: 10.1039/D2CC04348C pmid: 35696658 |
|
(e) Yuan, S.; Liu, X.; Huang, Z.; Gui, S.; Diao, Y.; Peng, Y.-Y.; Ding, Q. J. Org. Chem. 2022, 87, 16542.
doi: 10.1021/acs.joc.2c02100 pmid: 35696658 |
|
(f) Liu, X.; Yuan, S.; Liu, Y.; Ni, M.; Xu, J.; Gui, S.; Peng, Y.-Y.; Ding, Q. J. Org. Chem. 2023, 88, 198.
doi: 10.1021/acs.joc.2c02059 pmid: 35696658 |
|
[18] |
(a) Chen, B.; Vicic, D. A. Top. Organomet. Chem. 2014, 52, 113.
|
(b) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
doi: 10.1021/cr5002386 |
|
(c) Hu, X.-S.; He, J.-X.; Dong, S.-Z.; Zhao, Q.-H.; Yu, J.-S.; Zhou, J. Nat. Commun. 2020, 11, 5500.
doi: 10.1038/s41467-020-19387-4 |
|
[19] |
(a) Romanenko, V. D.; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
pmid: 16967924 |
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
doi: 10.1021/jm1013693 pmid: 16967924 |
|
(c) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
pmid: 16967924 |
|
(d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
doi: 10.1039/B610213C pmid: 16967924 |
|
[20] |
(a) Li, J.-X.; Li, L.; Zhou, M.-D.; Wang, H. Org. Chem. Front. 2018, 5, 1003.
doi: 10.1039/C7QO00939A |
(b) Liu, C.; Yang, Y.-J.; Dong, J.-Y.; Zhou, M.-D.; Li, L.; Wang, H. J. Org. Chem. 2019, 84, 9937.
doi: 10.1021/acs.joc.9b01106 |
|
(c) Yuan, Y.-R.; Li, L.; Bu, X.; Wang, X.; Sun, R.; Zhou, M.-D.; Wang, H. Asian J. Org. Chem. 2022, 11, e202200139.
doi: 10.1002/ajoc.v11.5 |
[1] | Jinxiao Zhao, Tonghui Wei, Sen Ke, Yi Li. Visible Light-Catalyzed Synthesis of Difluoroalkylated Polycyclic Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1102-1114. |
[2] | Zhi Tu, Jinsheng Yu, Jian Zhou. Synthesis of (Bromodifluoromethyl)trimethylsilane and Its Applications in Organic Synthesis [J]. Chinese Journal of Organic Chemistry, 2023, 43(10): 3491-3507. |
[3] | Qi Sun, Zeying Sun, Ze Yu, Guangwei Wang. Nickel-Catalyzed Stereoselective Aryl-Difluoroalkylation of Alkynes [J]. Chinese Journal of Organic Chemistry, 2022, 42(8): 2515-2520. |
[4] | Mengmeng Guo, Zilun Yu, Yulan Chen, Danhua Ge, Mengtao Ma, Zhiliang Shen, Xueqiang Chu. Difluorinated Silyl Enol Ethers as Fluorine-Containing Building Blocks for the Synthesis of Organofluorine Compounds [J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3562-3587. |
[5] | Jun Pan, Jingjing Wu, Fanhong Wu. Progress in Fluoroalkylation of Multicomponent [J]. Chinese Journal of Organic Chemistry, 2021, 41(3): 983-1001. |
[6] | Chen Zhichao, Zhang Hong, Zhou Shufeng, Cui Xiuling. K2S2O8-Initiated Cascade Cyclization of 2-Alkynylnitriles with Sodium Sulfinates: Access to Fused Cyclopenta[gh]phenanthridines [J]. Chinese Journal of Organic Chemistry, 2020, 40(11): 3866-3872. |
[7] | Tian Wenyan, Xu Song, Liang Zhongwei, Sun Deli, Zhang Ronghua. Synthesis of Oxindoles by Eosin Y Catalyzed under Visible Light [J]. Chin. J. Org. Chem., 2016, 36(9): 2121-2129. |
[8] | MENG Xiang-Ming,YU Yi-Yun,SHI Jing,FU Yao*. Theoretical Study on Radical Cyclizations for Preparation of β-Lactams [J]. Chin. J. Org. Chem., 2008, 28(04): 685-692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||