Chinese Journal of Organic Chemistry ›› 2023, Vol. 43 ›› Issue (5): 1875-1882.DOI: 10.6023/cjoc202302016 Previous Articles Next Articles
Special Issue: 有机硼化学专辑
ARTICLES
收稿日期:
2023-02-14
修回日期:
2023-04-03
发布日期:
2023-04-13
通讯作者:
贾义霞
基金资助:
Jun Lu, Qichuang Li, Renxiao Liang, Yixia Jia()
Received:
2023-02-14
Revised:
2023-04-03
Published:
2023-04-13
Contact:
Yixia Jia
Supported by:
Share
Jun Lu, Qichuang Li, Renxiao Liang, Yixia Jia. Nickel-Catalyzed Intramolecular Dearomative Arylation of Pyridiniums and Quinoliniums[J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1875-1882.
Entry | Solvent | Catalyst | Ligand | Yieldb/% |
---|---|---|---|---|
1 | THF | Ni(PPh3)2Br2 | Bpy | 55 |
2 | DMF | Ni(PPh3)2Br2 | Bpy | 0 |
3 | MeOH | Ni(PPh3)2Br2 | Bpy | 0 |
4 | Dioxane | Ni(PPh3)2Br2 | Bpy | 62 |
5 | Dioxane | NiBr2•DME | Bpy | <5 |
6 | Dioxane | Ni(PCy3)2Cl2 | Bpy | 46 |
7c | Dioxane | Ni(PPh3)2Br2 | Bpy | 52 |
8d | Dioxane | Ni(PPh3)2Br2 | Bpy | 48 |
9 | Dioxane | Ni(PPh3)2Br2 | 1,10-Phen | 65 |
10 | Dioxane | Ni(PPh3)2Br2 | L1 | 55 |
11 | Dioxane | Ni(PPh3)2Br2 | L2 | 60 |
12 | Dioxane | Ni(PPh3)2Br2 | L3 | 58 |
13e | Dioxane | Ni(PPh3)2Br2 | DMAP | 62 |
14f | Dioxane | Ni(PPh3)2Br2 | DMAP | 71 |
15g | Dioxane | Ni(PPh3)2Br2 | DMAP | 0 |
16h | Dioxane | Ni(PPh3)2Br2 | DMAP | 0 |
17 | Dioxane | DMAP | 0 |
Entry | Solvent | Catalyst | Ligand | Yieldb/% |
---|---|---|---|---|
1 | THF | Ni(PPh3)2Br2 | Bpy | 55 |
2 | DMF | Ni(PPh3)2Br2 | Bpy | 0 |
3 | MeOH | Ni(PPh3)2Br2 | Bpy | 0 |
4 | Dioxane | Ni(PPh3)2Br2 | Bpy | 62 |
5 | Dioxane | NiBr2•DME | Bpy | <5 |
6 | Dioxane | Ni(PCy3)2Cl2 | Bpy | 46 |
7c | Dioxane | Ni(PPh3)2Br2 | Bpy | 52 |
8d | Dioxane | Ni(PPh3)2Br2 | Bpy | 48 |
9 | Dioxane | Ni(PPh3)2Br2 | 1,10-Phen | 65 |
10 | Dioxane | Ni(PPh3)2Br2 | L1 | 55 |
11 | Dioxane | Ni(PPh3)2Br2 | L2 | 60 |
12 | Dioxane | Ni(PPh3)2Br2 | L3 | 58 |
13e | Dioxane | Ni(PPh3)2Br2 | DMAP | 62 |
14f | Dioxane | Ni(PPh3)2Br2 | DMAP | 71 |
15g | Dioxane | Ni(PPh3)2Br2 | DMAP | 0 |
16h | Dioxane | Ni(PPh3)2Br2 | DMAP | 0 |
17 | Dioxane | DMAP | 0 |
[1] |
(a) Kouznetsov, V. V.; Arenas, D. R. M.; Arvelo, F.; Forero, J. S. B.; Sojo, F.; Munoz, A. Lett. Drug Des. Discovery 2010, 7, 632.
doi: 10.2174/157018010792929577 |
(b) Rottmann, M.; McNamara, C.; Yeung, B. S. K.; Lee, M. C. S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D. M.; Dharia, N. V.; Tan, J.; Cohen, S. B.; Spencer, K. R.; Gonzalez-Paez, G.; Lakshiminarayana, S. B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E. K.; Beck, H.-P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T. H.; Fidock, D. A.; Winzeler, E. A.; Diagana, T. T. Science 2010, 329, 1175.
doi: 10.1126/science.1193225 |
|
(c) Yeung, B. K. S.; Zou, B.; Rottmann, M.; Lakshminarayana, S. B.; Ang, S. H.; Leong, S. Y.; Tan, J.; Wong, J.; Keller-Maerki, S.; Fischli, C.; Goh, A.; Schmitt, E. K.; Krastel, P.; Francotte, E.; Kuhen, K.; Plouffe, D.; Henson, K.; Wagner, T.; Winzeler, E. A.; Petersen, F.; Brun, R.; Dartois, V.; Diagana, T. T.; Keller, T. H. J. Med. Chem. 2010, 53, 5155.
doi: 10.1021/jm100410f |
|
(d) Lesma, G.; Landoni, N.; Sacchetti, A.; Silvani, A. Tetrahedron 2010, 66, 4474.
doi: 10.1016/j.tet.2010.04.077 |
|
(e) Ding, Q.; Liu, J.-J.; Zhang, Z. WO 2007104714, 2007.
|
|
[2] |
(a) Kim, J.; Park, S. Y.; Jung, M.; Jang, W. C.; Ko, H. M. Tetrahedron Lett. 2022, 88, 153512.
doi: 10.1016/j.tetlet.2021.153512 |
(b) Jang, W. C.; Jung, M.; Ko, H. M. Org. Lett. 2021, 23, 1510.
doi: 10.1021/acs.orglett.1c00292 |
|
(c) Wang, C.-H.; Reilly, J.; Brand, N.; Schwartz, S.; Alluri, S.; Chan, T.-M.; Buevich, A. V.; Ganguly, A. K. Tetrahedron Lett. 2021, 51, 6213.
doi: 10.1016/j.tetlet.2010.09.010 |
|
[3] |
(a) Hajra, S.; Jana, B. Org. Lett. 2017, 19, 4778.
doi: 10.1021/acs.orglett.7b02150 |
(b) Yang, M.-C.; Peng, C.; Huang, H.; Yang, L.; He, X.-H.; Huang, W.; Cui, H.-L.; He, G.; Han, B. Org. Lett. 2017, 19, 6752.
doi: 10.1021/acs.orglett.7b03516 |
|
(c) Homquist, M.; Blay, G.; Muñoz, M. C.; Pedro, J. R. Adv. Synth. Catal. 2015, 357, 3857.
doi: 10.1002/adsc.201500716 |
|
[4] |
Nakamura, S.; Matsuzaka, K.; Hatanaka, T.; Funahashi, Y. Org. Lett. 2020, 22, 2868.
doi: 10.1021/acs.orglett.0c00289 pmid: 32049543 |
[5] |
Chang, Z.; Ye, C.; Fu, J.; Chigumbu, P.; Zeng, X.; Wang, Y.; Jiang, C.; Han, X. Adv. Synth. Catal. 2019, 361, 5516.
doi: 10.1002/adsc.v361.24 |
[6] |
(a) Wang, Y.-H.; Tian, J.-S.; Tan, P.-W.; Cao, Q.; Zhang, X.-X., Cao, Z.-Y.; Zhou, F.; Wang, X.; Zhou, J. Angew. Chem., Int. Ed. 2020, 59, 1634.
doi: 10.1002/anie.v59.4 |
(b) Wang, Y.; Ready, J. M. Org. Lett. 2012, 14, 2308.
doi: 10.1021/ol300724c |
|
[7] |
(a) Bianchini, G.; Ribelles, P.; Becerra, D.; Ramosa, M. T.; Menéndez, J. C. Org. Chem. Front. 2016, 3, 412.
doi: 10.1039/C6QO00037A |
(b) Gao, H.; Sun, J.; Yan, C.-G. Synthesis 2014, 46, 489.
doi: 10.1055/s-00000084 |
|
(c) Zhang, H.-H.; Sun, X.-X.; Liang, J.; Wang, Y.-M.; Zhao, C.-C.; Shi, F. Org. Biomol. Chem. 2014, 12, 9539.
doi: 10.1039/C4OB01741B |
|
(d) Shi, F.; Xing, G.-J.; Zhu, R.-Y.; Tan, W.; Tu, S. Org. Lett. 2013, 15, 128.
doi: 10.1021/ol303154k |
|
(e) Kouznetsov, V. V.; Forero, J. S. B.; Torres, D. F. A. Tetrahedron Lett. 2008, 49, 5855.
doi: 10.1016/j.tetlet.2008.07.096 |
|
[8] |
Wang, X.-W.; Huang, W.-J.; Wang, H.; Wu, B.; Zhou, Y.-G. Org. Lett. 2022, 24, 1727.
doi: 10.1021/acs.orglett.2c00368 |
[9] |
(a) Gao, Y.-T.; Jin, X.-Y.; Liu, Q.; Liu, A.-D.; Cheng, L.; Wang, D.; Liu, L. Molecules 2018, 23, 2265.
doi: 10.3390/molecules23092265 |
(b) Ohmatsu, K.; Ando, Y.; Nakashima, T.; Ooi, T. Chem 2016, 1, 802.
doi: 10.1016/j.chempr.2016.10.012 |
|
(c) Fuchs, J. R.; Funk, R. L. Org. Lett. 2005, 7, 677.
doi: 10.1021/ol047532v |
|
[10] |
(a) Mu, B.-S.; Zhang, Z.-H.; Wu, W.-B.; Yu, J.-S.; Zhou, J. Acta Chim. Sinica 2021, 79, 685. (in Chinese)
doi: 10.6023/A21040131 |
(穆博帅, 张志豪, 武文彪, 余金生, 周剑, 化学学报, 2021, 79, 685.)
doi: 10.6023/A21040131 |
|
(b) Bertuzzi, G.; Bernardi, L.; Fochi, M. Catalysts 2018, 8, 632.
doi: 10.3390/catal8120632 |
|
(c) Ding, Q.; Zhou, X.; Fan, R. Org. Biomol. Chem. 2014, 12, 4807.
doi: 10.1039/C4OB00371C |
|
(d) Ahamed, M.; Todd, M. H. Eur. J. Org. Chem. 2010, 5935.
|
|
[11] |
(a) Pappoppula, M.; Cardoso, F. S. P.; Garrett, B. O.; Aponick, A. Angew. Chem., Int. Ed. 2015, 54, 15202.
doi: 10.1002/anie.201507848 pmid: 26514098 |
(b) Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. J. Org. Chem. 2008, 73, 1906.
doi: 10.1021/jo702293h pmid: 26514098 |
|
(c) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007, 129, 9300.
doi: 10.1021/ja0734849 pmid: 26514098 |
|
(d) Taylor, A. M.; Schreiber, S. L. Org. Lett. 2006, 8, 143.
doi: 10.1021/ol0526165 pmid: 26514098 |
|
[12] |
(a) Guo, Y.; Reis, M. C.; Kootstra, J.; Harutyunyan, S. R. ACS Catal. 2021, 11, 8476.
doi: 10.1021/acscatal.1c01544 |
(b) Fernandez-Ibanez, M. A.; Macia, B.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2009, 48, 9339.
doi: 10.1002/anie.v48:49 |
|
[13] |
(a) Lutz, J. P.; Chau, S. T.; Doyle, A. G. Chem. Sci. 2016, 7, 4105.
doi: 10.1039/C6SC00702C |
(b) Chau, S. T.; Lutz, J. P.; Wu, K.; Doyle, A. G. Angew. Chem., Int. Ed. 2013, 52, 9153.
doi: 10.1002/anie.201303994 |
|
[14] |
(a) Robinson, D. J.; Spurlin, S. P.; Gorden, J. D.; Karimov, R. R. ACS Catal. 2020, 10, 51.
doi: 10.1021/acscatal.9b03874 pmid: 26879692 |
(b) Wang, Y.; Liu, Y.; Zhang, D.; Wei, H.; Shi, M.; Wang, F. Angew. Chem., Int. Ed. 2016, 55, 3776.
doi: 10.1002/anie.201511663 pmid: 26879692 |
|
(c) Nadeau, C.; Aly, S.; Belyk, K. J. Am. Chem. Soc. 2011, 133, 2878.
doi: 10.1021/ja111540g pmid: 26879692 |
|
[15] |
(a) Yang, P.; Wang, Q.; Cui, B.-H.; Zhang, X.-D.; Liu, H.; Zhang, Y.-Y.; Liu, J.-L.; Huang, W.-Y.; Liang, R.-X.; Jia, Y.-X. J. Am. Chem. Soc. 2022, 144, 1087.
doi: 10.1021/jacs.1c11092 |
(b) Lou, S.-J.; Luo, G.; Yamaguchi, S.; An, K.; Nishiura, M.; Hou, Z. J. Am. Chem. Soc. 2021, 143, 20462.
doi: 10.1021/jacs.1c10743 |
|
[16] |
Zhang, M.; Chen, B.; Ge, C.; Liu, R.; Gao, J.; Jia, Y. Chin. J. Org. Chem. 2016, 36, 1636. (in Chinese)
doi: 10.6023/cjoc201602007 |
(张鸣頔, 陈斌, 葛晨, 刘人荣, 高建荣, 贾义霞, 有机化学, 2016, 36, 1636.)
doi: 10.6023/cjoc201602007 |
|
[17] |
Zhang, M.; Liu, R.; Gao, J.; Jia, Y. Chin. J. Org. Chem. 2017, 37, 652. (in Chinese)
doi: 10.6023/cjoc201610009 |
(张鸣頔, 刘人荣, 高建荣, 贾义霞, 有机化学, 2017, 37, 652.)
doi: 10.6023/cjoc201610009 |
|
[18] |
(a) Zhu, Z.; Xiao, J.; Li, M.; Shi, Z. Angew. Chem., Int. Ed. 2022, 61, e2022013.
|
(b) Jiang, X.; Jiang, H.; Yang, Q.; Cheng, Y.; Lu, L.-Q.; Tunge, J. A.; Xiao, W.-J. J. Am. Chem. Soc. 2022, 144, 8347.
doi: 10.1021/jacs.2c02481 |
|
[19] |
Heinz, C.; Lutz, J. P.; Simmons, E. M.; Miller, M. M.; Ewing, W. R.; Doyle, A. G. J. Am. Chem. Soc. 2018, 140, 2292.
doi: 10.1021/jacs.7b12212 |
[1] | Yang Li, Jinding Yuan, Di Zhao. Deep Eutectic Solvent of 1,3-Dimethylurea/L-(+)-Tartaric Acid for the Green Synthesis of (E)-2-Styrylquinoline-3-carboxylic Acid Derivatives [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3268-3276. |
[2] | Jing Tang, Wenkun Luo, Jun Zhou. Advances in the Synthesis of Azaspiro[4.5]trienones [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3006-3034. |
[3] | Xingxing Yang, Yonghao Fan, Jingjing Cui. Recent Progress in the Main Group Complexes with the 2,6-Pyridinediimine [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2338-2350. |
[4] | Yue Zhu, Lu Chen, Jing Zhao, Qingrong Sun, Weiqing Yang, Haiyan Fu, Menglin Ma. Synthesis of Quinoline Derivatives by Friedländer Reaction Catalyzed by Ruthenium Complexes of Substituted 8-Hydroxyquinoline [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2528-2542. |
[5] | Zhou Zhang, Yu Guo, Jing Yang, Dan Wu, Jiaxin Wang, Xinyue Hong, Peijun Cai, Liangce Rong. Electrochemically Promoted Halogenation of Imidazoland-[1,2-a]pyridine with Dichloro(bromo)ethylene and Iodoform [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2104-2109. |
[6] | Weina Tian, Liang Xu, Yu Wei, Pengfei Li. Synthesis of Isoquinoline-3-carboxylate Chelated B,B-Diaryl Tetracoordinated Organoboron Complexes [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1792-1798. |
[7] | Mingyang Pang, Honghong Chang, Zhang Feng, Juan Zhang. Recent Advances in Transition-Metal-Catalyzed Tandem Dearomatization of Indoles [J]. Chinese Journal of Organic Chemistry, 2023, 43(4): 1271-1291. |
[8] | Yanyan Zhang, Zhuzhu Zhang, Shengqing Zhu, Lingling Chu. Recent Advances in Nickel Catalyzed Asymmetric Acylation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1023-1035. |
[9] | Dongping Chen, Chunhong Yang, Ming Li, Guoxiao Zhao, Wenpeng Wang, Xicun Wang, Zhengjun Quan. Recent Progress on Arylation with Aryne through Three-Component Reaction [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 503-525. |
[10] | Huan Xu, Hongfei Wu, Xiaoming Zhang, Xingxing Lu, Tengda Sun, Yue Qi, Yufan Lin, Xinling Yang, Li Zhang, Yun Ling. Design, Synthesis and Bioactivity of Sulfonyl Hydrazides and Hydrazides Containing Fragment 1,2,3,4-Tetrahydroisoquinoline [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 725-733. |
[11] | Jianfei Gao, Shunyi Li, Yulong He, Yingxia Li, Heyao Wang, Erfang Huang, Chun Hu. Design, Synthesis and Biological Evaluation of FABP4/5 Inhibitors Based on Quinoline Scaffold [J]. Chinese Journal of Organic Chemistry, 2023, 43(2): 636-645. |
[12] | Peng Liu, Fuming Zhong, Lihao Liao, Weiqiang Tan, Xiaodan Zhao. Progress in the Construction of Spirocyclohexadienones via Alkyne-Involving Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4019-4035. |
[13] | Changyuan Du, Yucai Tang, Jinglin Duan, Biyu Yang, Yupeng He, Qian Zhou, Xuewen Liu. Organic-Dye-Catalyzed Visible-Light-Mediated Alkoxycarbon-ylation of 2-Aryl-N-acryloyl Indoles with Carbazates [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4268-4276. |
[14] | Licheng Wu, Xianqing Wu, Jingping Qu, Yifeng Chen. Exploration of Quinim Ligand in Ni-Catalyzed Enantioselective Reductive Carbamoyl-Alkylation of Alkene [J]. Chinese Journal of Organic Chemistry, 2023, 43(12): 4239-4250. |
[15] | Huaiyuan Zhang, Nuo Xu, Rongping Tang, Xingli Shi. Recent Advances in Asymmetric Dearomatization Reactions Induced by Chiral Hypervalent Iodine Reagents [J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3784-3805. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||