Reviews

Biosynthesis and Combinatorial Biosynthesis of Erythromycin

  • Chen Li ,
  • Sun Shaofa ,
  • Song Gongwu
Expand
  • a State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237;
    b State Key Laboratory of Bio-Organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2011-10-08

  Revised date: 2012-01-16

  Online published: 2012-02-08

Abstract

Combinatorial biosynthesis plays a growing role of drug discovery and development in the fields of biology, chemistry and medical sciences. Erythromycin, as the model molecule, has long been appreciated for the investigations into the biosynthesis of natural products and their associated structural diversity by pathway engineering. In this paper the progress regarding erythromycin in biosynthesis and combinatorial biosynthesis is reviewed. The problems and application prospects are also discussed.

Cite this article

Chen Li , Sun Shaofa , Song Gongwu . Biosynthesis and Combinatorial Biosynthesis of Erythromycin[J]. Chinese Journal of Organic Chemistry, 2012 , 32(07) : 1232 -1240 . DOI: 10.6023/cjoc1110083

References

[1] Demain, A. L. Appl. Microbiol. Biotechnol. 1999, 52, 455.  
[2] Spizek, J.; Novotna, J.; Rezanka, T.; Demain, A. L. J. Ind. Microbiol. Biotechnol. 2010, 37, 1241.  
[3] Walsh, C.; Wright, G. Chem. Rev. 2005, 105, 391.  
[4] Li, J. W.; Vederas, J. C. Science 2009, 325, 161.  
[5] Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022.  
[6] Shen, B.; Liu, W.; Nonaka, K. Curr. Med. Chem. 2003, 10, 2317.  
[7] Walsh, C. T. ChemBioChem 2002, 3, 125.
[8] McGuire, J. M.; Bunch, R. L.; Anderson, R. C.; Boaz, H. E.; Flynn, E. H.; Powell, H. M.; Smith, J. W. Schweiz Med. Wochenschr. 1952, 82, 1064.
[9] Bosnar, M.; Kelneric, Z.; Munic, V.; Erakovic, V.; Parnham, M. J. Antimicrob. Agents Chemother. 2005, 49, 2372.  
[10] Ma, Z.; Nemoto, P. A. Curr. Med. Chem.–Anti-Infective Agents 2002, 1, 15.  
[11] Staunton, J.; Wilkinson, B. Chem. Rev. 1997, 97, 2611.  
[12] Savino, C.; Montemiglio, L. C.; Sciara, G.; Miele, A. E.; Kendrew, S. G.; Jemth, P.; Gianni, S.; Vallone, B. J. Biol. Chem. 2009, 284, 29170.  
[13] Cupp-Vickery, J. R.; Poulos, T. L. Nat. Struct. Biol. 1995, 2, 144.  
[14] Keatinge-Clay, A. J. Mol. Biol. 2008, 384, 941.  
[15] Oliynyk, M.; Samborskyy, M.; Lester, J. B.; Mironenko, T.; Scott, N.; Dickens, S.; Haydock, S. F.; Leadlay, P. F. Nat. Biotechnol. 2007, 25, 447.  
[16] Shen, B. Curr. Opin. Chem. Biol. 2003, 7, 285.  
[17] Donadio, S.; Staver, M. J.; McAlpine, J. B.; Swanson, S. J.; Katz, L. Science 1991, 252, 675.  
[18] Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380.  
[19] Weber, J. M.; Leung, J. O.; Swanson, S. J.; Idler, K. B.; McAlpine, J. B. Science 1991, 252, 114.  
[20] Lambalot, R. H.; Cane, D. E.; Aparicio, J. J.; Katz, L. Biochemistry 1995, 34, 1858.  
[21] Chen, Y.; Deng, W.; Wu, J.; Qian, J.; Chu, J.; Zhuang, Y.; Zhang, S.; Liu, W. Appl. Environ. Microbiol. 2008, 74, 1820.  
[22] Wu, J.; Zhang, Q.; Deng, W.; Qian, J.; Zhang, S.; Liu, W. Appl. Environ. Microbiol. 2011, 77, 7508.  
[23] McDaniel, R.; Welch, M.; Hutchinson, C. R. Chem. Rev. 2005, 105, 543.  
[24] Ruan, X.; Pereda, A.; Stassi, D. L.; Zeidner, D.; Summers, R. G.; Jackson, M.; Shivakumar, A.; Kakavas, S.; Staver, M. J.; Donadio, S.; Katz, L. J. Bacteriol. 1997, 179, 6416.
[25] McDaniel, R.; Thamchaipenet, A.; Gustafsson, C.; Fu, H.; Betlach, M.; Ashley, G. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1846.
[26] Lu, L.; Arinthip, T.; Hong, F. J. Am. Chem. Soc. 1997, 119, 10553.  
[27] Petkovic, H.; Lill, R. E.; Sheridan, R. M.; Wilkinson, B.; McCormick, E. L.; McArthur, H. A.; Staunton, J.; Leadlay, P. F.; Kendrew, S. G. J. Antibiot. (Tokyo) 2003, 56, 543.  
[28] Stassi, D. L.; Kakavas, S. J.; Reynolds, K. A.; Gunawardana, G.; Swanson, S.; Zeidner, D.; Jackson, M.; Liu, H.; Buko, A.; Katz, L. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 7305.
[29] Marsden, A. F.; Wilkinson, B.; Cortes, J.; Dunster, N. J.; Staunton, J.; Leadlay, P. F. Science 1998, 279, 199.  
[30] Cundliffe, E.; Bate, N.; Butler, A.; Fish, S.; Gandecha, A.; Merson-Davies, L. Antonie Van Leeuwenhoek 2001, 79, 229.  
[31] Xue, Y.; Zhao, L.; Liu, H. W.; Sherman, D. H. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 12111.
[32] Waldron, C.; Matsushima, P.; Rosteck, P. R., Jr.; Broughton, M. C.; Turner, J.; Madduri, K.; Crawford, K. P.; Merlo, D. J.; Baltz, R. H. Chem. Biol. 2001, 8, 487.  
[33] Long, P. F.; Wilkinson, C. J.; Bisang, C. P.; Cortes, J.; Dunster, N.; Oliynyk, M.; McCormick, E.; McArthur, H.; Mendez, C.; Salas, J. A.; Staunton, J.; Leadlay, P. F. Mol. Microbiol. 2002, 43, 1215.  
[34] Katz, L.; McDaniel, R. Med. Res. Rev. 1999, 19, 543.  
[35] Donadio, S.; McAlpine, J. B.; Sheldon, P. J.; Jackson, M.; Katz, L. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 7119.
[36] Reid, R.; Piagentini, M.; Rodriguez, E.; Ashley, G.; Viswanathan, N.; Carney, J.; Santi, D. V.; Hutchinson, C. R.; McDaniel, R. Biochemistry 2003, 42, 72.  
[37] Bevitt, D. J.; Staunton, J.; Leadlay, P. F. Biochem. Soc. Trans. 1993, 21, 30S.
[38] Gokhale, R. S.; Hunziker, D.; Cane, D. E.; Khosla, C. Chem. Biol. 1999, 6, 117.  
[39] Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. 1994, 116, 11612.  
[40] Jacobsen, J. R.; Cane, D. E.; Khosla, C. Biochemistry 1998, 37, 4928.  
[41] Cane, D. E. J. Biol. Chem. 2010, 285, 27517.  
[42] Siskos, A. P.; Baerga-Ortiz, A.; Bali, S.; Stein, V.; Mamdani, H.; Spiteller, D.; Popovic, B.; Spencer, J. B.; Staunton, J.; Weissman, K. J.; Leadlay, P. F. Chem. Biol. 2005, 12, 1145.  
[43] Kallberg, Y.; Oppermann, U.; Jornvall, H.; Persson, B. Eur. J. Biochem. 2002, 269, 4409.
[44] Keatinge-Clay, A. T.; Stroud, R. M. Structure 2006, 14, 737.  
[45] Kao, C. M.; Luo, G.; Katz, L.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. 1995, 117, 9105.  
[46] Rowe, C. J.; Bohm, I. U.; Thomas, I. P.; Wilkinson, B.; Rudd, B. A.; Foster, G.; Blackaby, A. P.; Sidebottom, P. J.; Roddis, Y.; Buss, A. D.; Staunton, J.; Leadlay, P. F. Chem. Biol. 2001, 8, 475.  
[47] Schlunzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A.; Franceschi, F. Nature 2001, 413, 814.  
[48] Agouridas, C.; Denis, A.; Auger, J. M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J. F.; Dussarat, A.; Fromentin, C.; D'Ambrieres, S. G.; Lachaud, S.; Laurin, P.; Le Martret, O.; Loyau, V.; Tessot, N. J. Med. Chem. 1998, 41, 4080.  
[49] Zhang, C.; Fu, Q.; Albermann, C.; Li, L.; Thorson, J. S. ChemBioChem 2007, 8, 385.  
[50] Lee, H. Y.; Chung, H. S.; Hang, C.; Khosla, C.; Walsh, C. T.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2004, 126, 9924.  
[51] Yuan, Y.; Chung, H. S.; Leimkuhler, C.; Walsh, C. T.; Kahne, D.; Walker, S. J. Am. Chem. Soc. 2005, 127, 14128.  
[52] Schell, U.; Haydock, S. F.; Kaja, A. L.; Carletti, I.; Lill, R. E.; Read, E.; Sheehan, L. S.; Low, L.; Fernandez, M. J.; Grolle, F.; McArthur, H. A.; Sheridan, R. M.; Leadlay, P. F.; Wilkinson, B.; Gaisser, S. Org. Biomol. Chem. 2008, 6, 3315.  
[53] Tang, L.; McDaniel, R. Chem. Biol. 2001, 8, 547.  
[54] Tang, L.; Fu, H.; McDaniel, R. Chem. Biol. 2000, 7, 77.  
[55] Reeves, A. R.; Brikun, I. A.; Cernota, W. H.; Leach, B. I.; Gonzalez, M. C.; Mark Weber, J. Metab. Eng. 2007, 9, 293.  
[56] Reeves, A. R.; Brikun, I. A.; Cernota, W. H.; Leach, B. I.; Gonzalez, M. C.; Weber, J. M. J. Ind. Microbiol. Biotechnol. 2006, 33, 600.  
[57] Rodriguez, E.; Hu, Z.; Ou, S.; Volchegursky, Y.; Hutchinson, C. R.; McDaniel, R. J. Ind. Microbiol. Biotechnol. 2003, 30, 480.  
[58] Zhang, H.; Wang, Y.; Wu, J.; Skalina, K.; Pfeifer, B. A. Chem. Biol. 2010, 17, 1232.  
Outlines

/