Reviews

Advances in the Application of Urea-Hydrogen Peroxide to Oxidation Reactions

  • JI Li ,
  • LIU Jin-Qiang ,
  • QIAN Chao ,
  • CHEN Xin-Zhi
Expand
  • a Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027;
    b College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022

Received date: 2011-03-24

  Revised date: 2011-05-03

  Online published: 2012-03-09

Supported by

Project supported by the Aid Program for Key Science and Technology Innovative Research Team in Zhejiang Province (No. 2009R50002) and the Fundamental Research Funds for the Central Universities of China (No. 2011QNA4018).

Abstract

Oxidation reactions play important roles in organic synthesis, where hydrogen peroxide and peroxy acids are always employed as oxidants. Urea-hydrogen peroxide (UHP) is recently utilized in numerous oxidation reactions as environment- friendly solidified hydrogen peroxide, due to its advantages such as stable at room temperature, high hydrogen peroxide content (36.2%) and the potential for releasing it in a controlled manner. Several applications of UHP to organic synthesis are summarized according to reaction type, especially for epoxidation, Baeyer-Villiger oxidation, N-oxidation, oxidation of sulfides to sulfoxides and sulfones, oxidative-halogenation and so on.

Cite this article

JI Li , LIU Jin-Qiang , QIAN Chao , CHEN Xin-Zhi . Advances in the Application of Urea-Hydrogen Peroxide to Oxidation Reactions[J]. Chinese Journal of Organic Chemistry, 2012 , 32(02) : 254 -265 . DOI: 10.6023/cjoc1103243

References

[1] Jones, C. W. Applications of Hydrogen Peroxide and Derivatives, Royal Society of Chemistry, Cambridge, 1999, p. 79.

[2] Lane, B. S.; Burgess, K. Chem. Rev. 2003, 103(7), 2457.

[3] Sato, K.; Aoki, M.; Noyori, R. Science 1998, 281(5383), 1646.

[4] Baxendale, J. H.; Wilson, J. A. Trans. Faraday Soc. 1957, 53, 344.

[5] Mckillop, A.; Sanderson, W. R. Tetrahedron 1995, 51(22), 6145.

[6] Muzart, J. Synthesis 1995, 1325.

[7] McKillop, A.; Sanderson, W. R. J. Chem. Soc., Perkin Trans. 1 2000, (4), 471.

[8] Cooper, M. S.; Heaney, H.; Newbold, A. J.; Sanderson, W. R. Synlett 1990, (9), 533.

[9] Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemicals, 6th ed., Elsevier, Oxford, 2009, p. 470.

[10] Gonsalves, A. M. D. R.; Johnstone, R. A. W.; Pereira, M. M.; Shaw, J. J. Chem. Res., Synop. 1991, (8), 208.

[11] Smith, M. B.; March, J. Advanced Organic Chemistry: Reactions Mechanisms Structure, John Wiley & Sons, New Jersey, 2007, p. 1169.

[12] Adam, W.; Mitchell, C. M. Angew. Chem., Int. Ed. 1996, 35(5), 533.

[13] Boehlow, T. R.; Spilling, C. D. Tetrahedron Lett. 1996, 37(16), 2717.

[14] Malhotra, R.; Kumar, S.; Satyam, A. J. Chem. Soc., Chem. Commun. 1994, (11), 1339.

[15] Balch, A. L.; Costa, D. A.; Noll, B. C.; Olmstead, M. M. J. Am. Chem. Soc. 1995, 117(35), 8926.

[16] Murray, R. W.; Iyanar, K. Tetrahedron Lett. 1997, 38(3), 335.

[17] Legros, J.; Crousse, B.; Bonnet-Delpon, D.; Begue, J. P. Eur. J. Org. Chem. 2002, (19), 3290.

[18] Fan, C. L.; Lee, W. D.; Teng, N. W.; Sun, Y. C.; Chen, K. M. J. Org. Chem. 2003, 68(25), 9816.

[19] Valderrama, J. A.; Gonzalez, M. F.; Torres, C. Heterocycles 2003, 60(10), 2343.

[20] Ankudey, E. G.; Olivo, H. F.; Peeples, T. L. Green Chem. 2006, 8(10), 923.

[21] Jin, H.; Zhao, H. Y.; Zhao, F. H.; Li, S. H.; Liu, W.; Zhou, G. P.; Tao, K.; Hou, T. P. Ultrason. Sonochem. 2009, 16(3), 304.

[22] Mahmoodi, N. O.; Yazdanbakhsh, M. R.; Ghanbari, F. Synth. Commun. 2010, 40(21), 3181.

[23] Bouh, A. O.; Espenson, J. H. J. Mol. Catal. A: Chem. 2003, 200(1~2), 43.

[24] Ichihara, J.; Iteya, K.; Kambara, A.; Sasaki, Y. Catal. Today 2003, 87(1~4), 163.

[25] Saladino, R.; Bernini, R.; Neri, V.; Crestini, C. Appl. Catal. A 2009, 360(2), 171.

[26] Carreiro, E. D.; Burke, A. J.; Curto, M. J. M.; Teixeira, A. J. J. Mol. Catal. A: Chem. 2004, 217(1~2), 69.

[27] Kureshy, R. I.; Khan, N. U. H.; Abdi, S. H. R.; Singh, S.; Ahmed, I.; Shukla, R. S.; Jasra, R. V. J. Catal. 2003, 219(1), 1.

[28] Carreiro, E. D.; Yong-En, G.; Burke, A. J. J. Mol. Catal. A: Chem. 2005, 235(1~2), 285.

[29] Egami, H.; Katsuki, T. Angew. Chem., Int. Ed. 2008, 47(28), 5171.

[30] Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2010, 132(16), 5886.

[31] Maity, N. C.; Abdi, S. H. R.; Kureshy, R. I.; Khan, N. U. H.; Suresh, E.; Dangi, G. P.; Bajaj, H. C. J. Catal. 2011, 277(1), 123.

[32] Marigo, M.; Bachmann, S.; Halland, N.; Braunton, A.; Jorgensen, K. A. Angew. Chem., Int. Ed. 2004, 43(41), 5507.

[33] Rios, M. Y.; Salazar, E.; Olivo, H. F. Green Chem. 2007, 9(5), 459.

[34] Marcos, I. S.; Beneitez, A.; Castaneda, L.; Moro, R. F.; Basabe, P.; Diez, D.; Urones, J. G. Synlett 2007, (10), 1589.

[35] Garrido, N. M.; Garcia, M.; Sanchez, M. R.; Diez, D.; Urones, J. G. Synlett 2010, (3), 387.

[36] Gunaratne, H. Q. N.; McKervey, M. A.; Feutren, S.; Finlay, J.; Boyd, J. Tetrahedron Lett., 1998, 39(31), 5655.

[37] Balicki, R. J. Prakt. Chem., 1999, 341(2), 184.

[38] Balicki, R. Synth. Commun. 1999, 29(13), 2235.

[39] Varma, R. S.; Naicker, K. P. Org. Lett. 1999, 1(2), 189.

[40] Sasaki, Y.; Ushimaru, K.; Iteya, K.; Nakayama, H.; Yamaguchi, S.; Ichihara, J. Tetrahedron Lett. 2004, 45(52), 9513.

[41] Hasaninejad, A.; Chehardoli, G.; Zolfigol, M. A.; Abdoli, A. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186(2), 271.

[42] Saito, B.; Katsuki, T. Tetrahedron Lett. 2001, 42(23), 3873.

[43] Miyazaki, T.; Katsuki, T. Synlett 2003, (7), 1046.

[44] Bernier, D.; Wefelscheid, U. K.; Woodward, S. Org. Prep. Proced. Int. 2009, 41(3), 173.

[45] Kaczmarek, L.; Balicki, R.; Nantkanamirski, P. Chem. Ber. 1992, 125(8), 1965.

[46] Caron, S.; Do, N. M.; Sieser, J. E. Tetrahedron Lett. 2000, 41(14), 2299.

[47] Balicki, R.; Golinski, J. Synth. Commun. 2000, 30(8), 1529.

[48] Rong, D. W.; Phillips, V. A.; Rubio, R. S.; Castro, M. A.; Wheelhouse, R. T. Tetrahedron Lett., 2008, 49(48), 6933.

[49] Marcantoni, E.; Petrini, M.; Polimanti, O. Tetrahedron Lett. 1995, 36(20), 3561.

[50] Goti, A.; Nannelli, L. Tetrahedron Lett. 1996, 37(33), 6025.

[51] Murray, R. W.; Iyanar, K.; Chen, J. X.; Wearing, J. T. J. Org. Chem. 1996, 61(23), 8099.

[52] Soldaini, G.; Cardona, F.; Goti, A. Org. Lett. 2007, 9(3), 473.

[53] Cardona, F.; Bonanni, M.; Soldaini, G.; Goti, A. ChemSusChem 2008, 1(4), 327.

[54] Singh, B.; Jain, S. L.; Khatri, P. K.; Sain, B. Green Chem. 2009, 11(12), 1941.

[55] Podgoršek, A.; Zupan, M.; Iskra, J. Angew. Chem., Int. Ed. 2009, 48(45), 8424.

[56] Roche, D.; Prasad, K.; Repic, O.; Blacklock, T. J. Tetrahedron Lett. 2000, 41(13), 2083.

[57] Kabalka, G. W.; Yang, K. Synth. Commun. 1998, 28(20), 3807.

[58] Paul, S.; Nanda, P.; Gupta, R. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005, 44(1), 184.

[59] Lee, J. C.; Park, H. J. Synth. Commun. 2006, 36(6), 777.

[60] Lee, J. C.; Park, H. J. Synth. Commun. 2007, 37(1-3), 87.

[61] El-Ahl, A. A. S.; Elbeheery, A. H.; Amer, F. A. Synth. Commun. 2011, 41(10), 1508.

[62] Sosnowski, M.; Skulski, L. Molecules 2002, 7(12), 867.

[63] Pavlinac, J.; Zupan, M.; Stavber, S. Org. Biomol. Chem. 2007, 5(4), 699.

[64] Pavlinac, J.; Zupan, M.; Stavber, S. Acta Chim. Slov. 2008, 55(4), 841.

[65] Lulinski, P.; Kryska, A.; Sosnowski, M.; Skulski, L. Synthesis 2004, (3), 441.

[66] Balicki, R.; Kaczmarek, L. Synth. Commun. 1993, 23(22), 3149.

[67] Balicki, R. Synth. Commun. 2001, 31(14), 2195.

[68] Heaney, H.; Newbold, A. J. Tetrahedron Lett. 2001, 42(37), 6607.

[69] Park, H. J.; Lee, J. C. Synlett 2009, (1), 79.

[70] Ballini, R.; Marcantoni, E.; Petrini, M. Tetrahedron Lett. 1992, 33(33), 4835.

[71] Cardona, F.; Soldaini, G.; Goti, A. Synlett 2004, (9), 1553.

[72] Finlay, J.; McKervey, M. A.; Gunaratne, H. Q. N. Tetrahedron Lett. 1998, 39(31), 5651.

[73] Filipan-Litvic, M.; Litvic, M.; Vinkovic, V. Tetrahedron 2008, 64(24), 5649.

[74] Suto, Y.; Yamagiwa, N.; Torisawa, Y. Tetrahedron Lett. 2008, 49(40), 5732.
Outlines

/