Chinese Journal of Organic Chemistry >
Progress in Asymmetric Organocatalyzed Michael Addition/Hemi-aminoacetalization/Acylimminium-Cyclization Cascade Reactions
Received date: 2012-08-28
Revised date: 2012-09-12
Online published: 2012-09-18
Supported by
Project supported by the the National Natural Science Foundation of China (Nos. 20802043, 21072125).
During the last decades along with the development of asymmetric organocatalysis, tremendous achievements have been made in asymmetric organocatalytic domino or cascade reactions. Herein, the examples of domino or cascade reactions based on asymmetric organocatalyzed Michael addition are described. More specifically, this review aims to cover and discuss the hemi-aminoacetalyzation/acylimminium-cyclization initiated by Michael addition, and the application of this type of reactions in the synthesis of alkaloids.
Key words: organocatalysis; cascade reaction; N-containing multi cycles; alkaloid
Chen Jie , Liu Qin , Dai Xiaoyang , Nie Linlin , Fang Huihui , Wu Xiaoyu . Progress in Asymmetric Organocatalyzed Michael Addition/Hemi-aminoacetalization/Acylimminium-Cyclization Cascade Reactions[J]. Chinese Journal of Organic Chemistry, 2013 , 33(01) : 1 -17 . DOI: 10.6023/cjoc201208032
[1] For reviews, see: (a) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239.
(b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(c) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
(d) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
(e) Yet, L. Chem. Rev. 2000, 100, 2963.
(f) Clement, N. D.; Cavell, K. J. Angew. Chem., Int. Ed. 2004, 43, 3845.
(g) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(h) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
(i) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
(j) Jakopin, Z.; Dolenc, M. S. Curr. Med. Chem. 2010, 17, 651.
[2] For selected references: (a) Enders, D.; Thiebes, T. Pure Appl. Chem. 2001, 73, 573.
(b) Liddell, J. R. Nat. Prod. Rep. 2002, 19, 773.
(c) Michael, J. P. Nat. Prod. Rep. 2001, 18, 520.
(d) O’Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
(e) Saxton, J. E. Nat. Prod. Rep. 1997, 14, 559.
(f) Mitchinson, A.; Nadin, A. J. Chem. Soc., Perkin Trans. 1 2000, 2862.
[3] For selected reviews on organocatalysis, see: (a) Berkessel, A.; Groger, H. Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2004.
(b) List, B.; Yang, J.-W. Science 2006, 313, 1584.
(c) List, B. Chem. Commun. 2006, 819.
(d) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001.
(e) Special issue on organocatalysis: Chem. Rev. 2007, 107, 5413.
(f) Dalko, P. I. Enantioselective Organocatalysis: Reactions and Experimental Procedures, Wiley-VCH, Weinheim, 2007.
(g) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638.
(h) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
(i) Bertelsen, S.; Jørgensen, K. A. Chem. Soc. Rev. 2009, 38, 2178.
[4] For selected reviews, see: (a) Yu, X. H.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037.
(b) Grondal, C.; Matthieu, J.; Enders, D. Nat. Chem. 2010, 2, 167.
(c) Alba, A. N.; Companyó, X.; Viciano, M.; Rios, R. Curr. Org. Chem. 2009, 13, 1432.
(d) Bernhard, W.; Muhammad, A.; Sander, S. B. Angew. Chem., Int. Ed. 2010, 49, 846.
(e) Peng, F. Z.; Shao, Z. H. Curr. Org. Chem. 2011, 15, 4144.
(f) Pellissier, H. Adv. Synth. Catal. 2012, 354, 237.
[5] Royer, J.; Bonin, M.; Micoui, L. Chem. Rev. 2004, 104, 2311 and references therein.
[6] Pictet, A.; Spengler, T. Ber. Dtsch. Chem. Ges. 1911, 44, 2030.
[7] For examples of conjugate additions promoted by prolinol TMS ether, see: (a) Brandau, S.; Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2006, 45, 4305.
(b) Carlone, A.; Cabrera, S.; Marigo, M.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1101.
(c) Carlone, A.; Marigo, M.; North, C.; Landa, A.; Jørgensen, K. A. Chem. Commun. 2006, 4928.
[8] For reviews on organocatalytic conjugate additions, see: (a) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701.
(b) Enders, D.; Wang, C.; Liebich, J. X. Chem. Eur. J. 2009, 15, 11058.
(c) Zhu, Q.; Lu, Y. X. Aust. J. Chem. 2009, 62, 951.
(d) Vicario, J. L.; Badia, D.; Carrillo, L. Synthesis 2007, 2065.
(e) Sulzer-Mosse, S.; Alexakis, A. Chem. Commun. 2007, 3123.
(f) Ying, A. G.; Wu, C. L.; Fu, Y. Q.; Ren, S. B.; Liang, H. D. Chin. J. Org. Chem. 2012, 32, 1587 (in Chinese). (应安国, 武承林, 付永前, 任世斌, 梁华定, 有机化学, 2012, 32, 1587.)
[9] Stöckigt, J.; Antonchick, A. P.; Wu, F. R.; Waldmann, H. Angew. Chem., Int. Ed. 2011, 50, 8538.
[10] (a) Franzén, J.; Fisher, A. Angew. Chem., Int. Ed. 2009, 48, 787.
(b) Zhang, W.; Franzen, J. Adv. Synth. Catal. 2010, 352, 499.
[11] (a) Cordell, G. A. The Alkaloids: Chemistry and Biology, Vol. 50, Academic Press, New York, 1998.
(b) Szántay C.; Honty, K. The Chemistry of Heterocyclic Compounds, Vol. 25, Ed.: Saxton, J. E., Wiley, New York, 1994, p. 161.
(c) Baxter E. W.; Mariano, P. S. In Alkaloids: Chemical and Biological Perspectives, Vol. 8, Ed.: Pelletier, S. W., Springer, New York, 1992, p. 197.
[12] (a) Wu, X. Y.; Dai, X. Y.; Nie, L. L.; Fang, H. H.; Chen, J.; Ren, Z. J.; Cao, W. G.; Zhao, G. Chem. Commun. 2010, 46, 2733.
(b) Fang, H. H.; Wu, X. Y.; Nie, L. L.; Dai, X. Y.; Chen, J.; Cao, W. G.; Zhao, G. Org. Lett. 2010, 12, 5366.
(c) Dai, X. Y.; Wu, X. Y.; Fang, H. H.; Nie, L. L.; Chen, J.; Deng, H. M.; Cao, W. G.; Zhao, G. Tetrahedron 2011, 67, 3034.
(d) Wu, X. Y.; Zhang, Y.; Dai, X. Y.; Fang, H. H.; Chen, J.; Cao, W. G.; Zhao, G. Synthesis 2011, 3675.
(e) Wu, X. Y.; Fang, H. H.; Liu, Q.; Nie, L. L.; Chen, J.; Cao, W. G.; Zhao, G. Tetrahedron 2011, 67, 7251.
(f) Wu, X. Y.; Dai, X. Y.; Fang, H. H.; Nie, L. L.; Chen, J.; Cao, W. G.; Zhao, G. Chem. Eur. J. 2011, 17, 10510.
[13] Deiters, A.; Chen, K.; Eary, C. T.; Martin, S. F. J. Am. Chem. Soc. 2003, 125, 4541.
[14] Zhang, W.; Bah, J.; Wohlfarth, A.; Franzén, J. Chem. Eur. J. 2011, 17, 13814.
[15] Rueping, M.; Volla, C. M. R. RSC Adv. 2011, 1, 79.
[16] Reviews on chiral Brønsted acid catalysis: (a) Bolm, C.; Rantanen, T.; Schiffers I.; Zani, L. Angew. Chem., Int. Ed. 2005, 44, 1758.
(b) Akiyama, T.; Itoh J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(c) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(d) Doyle A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713.
(e) Kampen, D.; Reisinger C. M.; List, B. Top. Curr. Chem. 2010, 291, 395.
(f) Yamamoto H.; Payette, N. In Hydrogen Bonding in Organic Synthesis, Ed.: Pihko P. M., Wiley-VCH, Weinheim, 2009, p. 73.
[17] Lin, S. Z.; Deiana, L.; Tseggai, A.; Córdova, A. Eur. J. Org. Chem. 2012, 398.
[18] Franke, P. T.; Richter, B.; Jørgensen, K. A. Chem. Eur. J. 2008, 14, 6317.
[19] Rueping, A. M.; Volla, C. M. R.; Bolte, M.; Raabe, G. Adv. Synth. Catal. 2011, 353, 2853.
[20] Hirst, G. C. In Encyclopedia of Reagents for Organic Synthesis, Vol. 5, Ed.: Paquette, L. A., Wiley, New York, 1995, p. 3576.
[21] (a) Tejedor, D.; González-Cruz, D.; Santos-Expósito, A.; Marrero- Tellado, J. J.; de Armas, P.; García-Tellado, F. Chem. Eur. J. 2005, 11, 3502.
(b) Tejedor, D.; López-Tosco, S.; Fabio Cruz-Acosta, F.; Méndez-Abt, G.; García-Tellado, F. Angew. Chem., Int. Ed. 2009, 48, 2090.
[22] For selected examples of domino reactions and MCRs employing alkyl propiolates as reaction partners, see: (a) Tejedor, D.; Santos-Expósito, A.; García-Tellado, F. Chem. Commun. 2006, 2667.
(b) Tejedor, D.; Santos-Expósito, A.; García-Tellado, F. Chem. Eur. J. 2007, 13, 1201.
[23] For selected examples of asymmetric catalyzed addition of alkyl propiolates to electrophiles, see: (a) Gao, G.; Wang, Q.; Yu, X. Q.; Xie, R. G.; Pu, L. Angew. Chem., Int. Ed. 2005, 45, 122.
(b) Lin, L.; Jiang, X.; Liu, W.; Qiu, L.; Xu, Z.; Xu, J.; Chan, A. S. C.; Wang, R. Org. Lett. 2007, 9, 2329.
(c) Trost, B. M.; Weiss, A. H.; Jacobi von Wangelin, A. J. Am. Chem. Soc. 2006, 128, 8.
(d) Fujimori, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4964.
[24] (a) Marshall, J. A.; Johnson, W. S. J. Org. Chem. 1963, 28, 421.
(b) Johnson, W. S.; Bauer, V. J.; Franck, R. W. Tetrahedron Lett. 1961, 2, 72.
(c) Marshall, J. A.; Johnson, W. S. J. Am. Chem. Soc. 1962, 84, 1485.
[25] (a) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104, 2239.
(b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
(c) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
(d) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
(e) Yet, L. Chem. Rev. 2000, 100, 2963.
(f) Clement, N. D.; Cavell, K. J. Angew. Chem., Int. Ed. 2004, 43, 3845.
(g) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(h) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
(i) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
[26] Jin, Z. C.; Huang, H. C.; Li, W. J.; Luo, X. Y.; Liang, X. M.; Ye, J. X. Adv. Synth. Catal. 2011, 353, 343.
[27] Jin, Z. C.; Yu, F.; Wang, X.; Huang, H. C.; Luo, X. Y.; Liang, X. M.; Ye, J. X. Org. Biomol. Chem. 2011, 9, 1809.
[28] Jin, Z. C.; Wang, X.; Huang, H. C.; Liang, X. M.; Ye, J. X. Org. Lett. 2011, 13, 564.
[29] Jiang, J.; Qing, J.; Gong, L. Z. Chem. Eur. J. 2011, 15, 7031.
[30] Zhou, S. L.; Li, J. L.; Dong, L.; Chen, Y. C. Org. Lett. 2011, 13, 5874.
[31] Zhu, H. L.; Ling, J. B.; Xu, P. F. J. Org. Chem. 2012, 77, 7737.
/
〈 |
|
〉 |