Reviews

N—H Bond Activation of Ammonia by Transition Metal and Main Group Element Complexes

  • Fang Huayi ,
  • Ling Zhen ,
  • Fu Xuefeng
Expand
  • College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Received date: 2013-01-31

  Revised date: 2013-03-14

  Online published: 2013-03-15

Abstract

Activation of ammonia has received increasing attention in recent years due to its important role both in nature and industry processes. A series of transition metal (such as Ir, Rh, Ru, Fe, Pd, etc.) and main group element (such as Si, Ge, Sn, etc.) complexes have been reported to activate N—H bond of ammonia in the past three decades. This review includes the recent progresses in homogeneous N—H bond activation of ammonia by transition metal and main group element complexes.

Cite this article

Fang Huayi , Ling Zhen , Fu Xuefeng . N—H Bond Activation of Ammonia by Transition Metal and Main Group Element Complexes[J]. Chinese Journal of Organic Chemistry, 2013 , 33(04) : 738 -748 . DOI: 10.6023/cjoc201301081

References

[1] Ritter, P. Biochemistry: A Foundation, Brooks/Cole Publishing Company, Pacific Grove, 1996, pp. 634~637.

[2] Werner, A. Z. Anorg. Allg. Chem, 1893, 3, 267.

[3] Luo, R.-R. Comprehensive Handbook of Chemical Bond Energies, CRC Press, New York, 2007, pp. 369~395.

[4] Haggin, J. Chem. Eng. News 1993, 71, 23.

[5] Hartwig, J. F.; Klinkenberg, J. L. Angew. Chem., Int. Ed. 2011, 50, 86.

[6] van der Vlugt, J. I. Chem. Soc. Rev. 2010, 39, 2302.

[7] Gunanathan, C.; Milstein, D. Angew. Chem., Int. Ed. 2008, 47, 8661.

[8] Pouy, M. J.; Stamley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312.

[9] Pouy, M. J.; Leitner, A.; Weix, D. J.; Ueno, S.; Hartwig, J. F. Org. Lett. 2007, 9, 3949.

[10] Vo, G. D.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11049.

[11] Kawahara, R.; Fujita, K.-I.; Yamaguchi, R. J. Am. Chem. Soc. 2010, 132, 15108.

[12] Nagano, T.; Kobayashi, S. J. Am. Chem. Soc. 2009, 131, 4200.

[13] Das, K.; Shibuya, R.; Nakahara, Y.; Germain, N.; Ohshima, T.; Mashima, K. Angew. Chem., Int. Ed. 2012, 51, 150.

[14] Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. Inorg. Chem. 1987, 26, 971.

[15] Koelliker, R.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1991, 30, 707.

[16] Koelliker, R.; Milstein, D. J. Am. Chem. Soc. 1991, 113, 8524.

[17] Schulz, M.; Milstein, D. J. Chem. Soc., Chem. Commun. 1993, 318.

[18] Fulton, J. R.; Holland, A. W.; Fox, D. J.; Bergman, R. G. Acc. Chem. Res. 2002, 35, 44

[19] Cornils, B.; Herrmann, W. A. Applied Homogeneous Catalysis with Organometallic Compounds, VCH, New York, 1996, Vol. 1.

[20] Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry, 6th ed., Wiley, New York, 1999.

[21] Roundhill, D. M. Chem. Rev. 1992, 92, 1.

[22] Roundhill, D. M. Catal. Today 1997, 37, 155.

[23] Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805.

[24] Yang, B. H.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.

[25] Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.

[26] Fulton, J. R.; Sklenak, S.; Bouwkamp, M. W.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 4722.

[27] Fox, D. J.; Bergman, R. G. Organometallics 2004, 23, 1656.

[28] Joslin, F. L.; Johnson, M. P.; Mague, J. T.; Roundhill, D. M. Organometallics 1991, 10, 2781.

[29] Kaplan, A. W.; Ritter, J. C. M.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 6828.

[30] Campora, J.; Palma, P.; del Rio, D.; Conejo, M. M.; Alvarez, E. Organometallics 2004, 23, 5653.

[31] Conner, D.; Jayaprakash, K. N.; Cundari, T. R.; Gunnoe, T. B. Organometallics 2004, 23, 2724.

[32] Zhao, J.; Goldman, A. S.; Hartwig, J. F. Science 2005, 307, 1080.

[33] Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman, A. S.; Zhao, J.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 13644.

[34] Morgan, E.; MacLean, D. F.; McDonald, R.; Turculet, L. J. Am. Chem. Soc. 2009, 131, 14234.

[35] Kimura, T.; Koiso, N.; Ishiwata, K.; Kuwata, S.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 8880.

[36] Jungton, A.-K.; Herwig, C.; Braun, T.; Limberg, C. Chem. Eur. J. 2012, 18, 10009.

[37] Kläring, P.; Pahl, S.; Braun, T.; Penner, A. Dalton Trans. 2011, 40, 6785.

[38] Mena, I.; Casado, M. A.; García-Orduña, P.; Polo, V.; Lahoz, F. J.; Fazal, A.; Oro, L. A. Angew. Chem., Int. Ed. 2011, 50, 11735.

[39] Nakajima, Y.; Kameo, H.; Suzuki, H. Angew. Chem., Int. Ed. 2006, 45, 950.

[40] Khaskin, E.; Iron, M. A.; Shimon, L. J. W.; Zhang, J.; Milstein, D. J. Am. Chem. Soc. 2010, 132, 8542.

[41] Ni, C.; Lei, H.; Power, P. P. Organometallics 2010, 29, 1988.

[42] Bryan, E. G.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans. 1977, 1328.

[43] Süss-Fink, G. Z. Naturforsch., B: J. Chem. Sci. 1980, 35, 454.

[44] Johnson, B. F. G.; Lewis, J.; Odiaka, T. I.; Raithby, P. R. J. Organomet. Chem. 1981, 216, C56.

[45] Süss-Fink, G.; Khan, L.; Raithby, P. R. J. Organomet. Chem. 1982, 228, 179.

[46] Armor, J. N. Inorg. Chem. 1978, 17, 203.

[47] Roesky, H. W.; Bai, Y.; Noltemeyer, M. Angew. Chem., Int. Ed. Engl. 1989, 28, 754.

[48] Gómez-Sal, P.; Martín, A.; Mena, M.; Yélamos, C. J. Chem. Soc., Chem. Commun. 1995, 2185.

[49] Abarca, A.; Gómez-Sal, P.; Martín, A.; Mena, M.; Poblet, J. M.; Yélamos, C. Inorg. Chem. 2000, 39, 642.

[50] Ochi, N.; Nakao, Y.; Sato, H.; Sakaki, S. J. Am. Chem. Soc. 2007, 129, 8615.

[51] Hillhouse, G. L.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5472.

[52] Bercaw, J. E.; Davies, D. L.; Wolczanski, P. T. Organometallics 1986, 5, 443.

[53] Holl, M. M. B.; Wolczanski, P. T.; Vanduyne, G. D. J. Am. Chem. Soc. 1990, 112, 7989.

[54] Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.; Ozerov, O. V. J. Am. Chem. Soc. 2007, 129, 10318.

[55] Power, P. P. Nature 2010, 463, 171.

[56] Power, P. P. Nat. Chem. 2012, 4, 343.

[57] Mandal, S. K.; Roesky, H. W. Acc. Chem. Res. 2012, 45, 298.

[58] Power, P. P. Acc. Chem. Res. 2011, 44, 627.

[59] Fang, H.; Ling, Z.; Brothers, P.; Fu, X. Chem. Commun. 2011, 47, 11677.

[60] Yao, S.; Xiong, Y.; Driess, M. Organometallics 2011, 30, 1748.

[61] Mazumder, B.; Hector, A. L. J. Mater. Chem. 2009, 19, 4673.

[62] Neumayer, D. A.; Ekerdt, J. G. Chem. Mater. 1996, 8, 9.

[63] Dehnicke, K.; Weller, F.; Strähle, J. Chem. Soc. Rev. 2001, 30, 125.

[64] Frey, G. D.; Lavallo, V.; Donnadieu, B.; Schoeller, W. W.; Bertrand, G. Science 2007, 316, 439.

[65] Hudnall, T. W.; Moerdyk, J. P.; Bielawski, C. W. Chem. Commun. 2010, 46, 4288.

[66] Jana, A.; Schulzke, C.; Roesky, H. W. J. Am. Chem. Soc. 2009, 131, 4600.

[67] Meltzer, A.; Inoue, S.; Präsang, C.; Driess, M. J. Am. Chem. Soc. 2010, 132, 3038.

[68] Xiong, Y.; Yao, S.; Müller, R.; Kaupp, M.; Driess, M. J. Am. Chem. Soc. 2010, 132, 6912.

[69] Wraage, K.; Lameyer, L.; Stalke, D.; Roesky, H. W. Angew. Chem., Int. Ed. 1999, 38, 522.

[70] Stanciu, C.; Hino, S. S.; Stender, M.; Richards, A. F.; Olmstead, M. M.; Power, P. P. Inorg. Chem. 2005, 44, 2774.

[71] Peng, Y.; Guo, J.-D.; Ellis, B. D.; Zhu, Z.; Fettinger, J. C.; Nagase, S.; Power, P. P. J. Am. Chem. Soc. 2009, 131, 16272.

[72] Jana, A.; Objartel, I.; Roesky, H. W.; Stalke, D. Inorg. Chem. 2009, 48, 798.

[73] Peng, Y.; Ellis, B. D.; Wang, X.; Power, P. P. J. Am. Chem. Soc. 2008, 130, 12268. Chase, P. A.; Stephan, D. W. Angew. Chem., Int. Ed. 2008, 47, 7433.
Outlines

/