Reviews

Recent Advances in C—H Functionalizations Assisted by Removable and/or Modifiable Directing Groups

  • Zhang Wei ,
  • Zhang Jiahui ,
  • Liu Yunkui
Expand
  • State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014

Received date: 2013-08-10

  Revised date: 2013-09-26

  Online published: 2013-09-30

Supported by

Project supported by the National Natural Science Foundation of China (No. 21172197), the Natural Science Foundation of Zhejiang Province (No. Y4100201), the Foundation of Science and Technology Department of Zhejiang Province (No. 2011R09002-09).

Abstract

Transition-metal catalyzed chelation-assisted C—H bond functionalization is one of hot topics in current organic chemistry. Recently, using removable and/or modifiable directing groups for C—H bond functionalizations has being received specially attention and developed rapidly. By taking advantage of removable and/or modifiable directing groups, it not only greatly expands the scope of substrates for C—H fuctionalization, but also plays important roles in rapid construction of molecule diversity. Based on the classification according to different hetero-atom (N, O, S, and Si) donors, this review presents the state of the art in design of removable and/or modifiable directing groups for transition-metal catalyzed C—H functionalizations and their application in construction of molecule diversity. Finally, the existing problems and limitations of this field are summarized, and the outlook of the area is also prospected.

Cite this article

Zhang Wei , Zhang Jiahui , Liu Yunkui . Recent Advances in C—H Functionalizations Assisted by Removable and/or Modifiable Directing Groups[J]. Chinese Journal of Organic Chemistry, 2014 , 34(1) : 36 -53 . DOI: 10.6023/cjoc201308012

References

[1] (a) Dyker, G. Handbook of CH Transformations: Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2005.
(b) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
(c) Kakiuchi, F.; Kochi, T. Synthesis 2008, 3013.
(d) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
(e) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013.
(f) Ackermann, L. Chem. Commun. 2010, 4866.
(g) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(h) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(i) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704.
(j) Herrmann, P.; Bach, T. Chem. Soc. Rev. 2011, 40, 2022.
(k) Collet, F.; Dodd, R. H.; Dauban, P. Chem. Commun. 2009, 5061.
(l) Collet, F.; Lescot, C.; Dauban, P. Chem. Soc. Rev. 2011, 40, 2022.
(m) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev. 2010, 110, 890.
(n) Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864.
(o) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed. 2012, 51, 8960.
[2] For selected reviews on transition-metal-catalyzed chelation-assisted C—H activations, see: (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
(b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(d) Li, B.-J.; Yang, S.-D.; Shi, Z.-J. Synlett 2008, 949.
(e) Daugulis, O.; Do, H.-Q.; Shabashow, D. Acc. Chem. Rev. 2009, 42, 1074.
(f) Godula, K.; Sames, D. Science 2006, 312, 67.
(g) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041.
[3] Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 366, 529.
[4] (a) Rousseau, G.; Breit, B. Angew. Chem., Int. Ed. 2011, 50, 2450.
(b) Wang, C.; Huang, Y. Synlett 2013, 145.
(c) Wang, Y.; Chen, G.; Cui, X. Chin. J. Org. Chem. 2012, 32, 2018 (in Chinese).
(王勇, 程国林, 崔秀灵, 有机化学, 2012, 32, 2018.)
[5] Pastine, S. J.; Gribkov, D. V.; Sames, D. J. Am. Chem. Soc. 2006, 128, 14220.
[6] Chu, J.-H.; Wu, C.-C.; Chang, D.-H.; Lee, Y.-M.; Wu, M.-J. Organometallics 2013, 32, 272.
[7] Ackermann, L.; Lygin, A. V. Org. Lett. 2011, 13, 3332.
[8] Ackermann, L.; Lygin, A. V. Org. Lett. 2012, 14, 764.
[9] Du, J.; Zhou, B.; Yang, Y.; Li, Y. Chem.-Asian J. 2013, 8, 1386.
[10] Koley, M.; Dastbaravardeh, N.; Schnürch, M.; Mihovilovic, M. D. ChemCatChem 2012, 4, 1345.
[11] Dastbaravardeh, N.; Schnürch, M.; Mihovilovic, M. D. Org. Lett. 2012, 14, 1930.
[12] Chu, J.-H.; Lin, P.-S.; Wu, M.-J. Organometallics 2010, 29, 4058.
[13] Ackermann, L.; Diers, E.; Manvar, A. Org. Lett. 2012, 14, 1154.
[14] Cong, X.; You, J.; Gao, G.; Lan, J. Chem. Commun. 2013, 662.
[15] Yu, M.; Liang, Z.; Wang, Y.; Zhang, Y. J. Org. Chem. 2011, 76, 4987.
[16] García-Rubia, A.; Fernández-Ibáňez, M. Á; Arrayás, R. G.; Carretero, J. C. Chem.-Eur. J. 2011, 17, 3567.
[17] Urones, B.; Arrayás, R. G.; Carretero, J. C. Org. Lett. 2013, 15, 1120.
[18] Rodríguez, N.; Romerco-Revilla, J. A.; Fernández-Ibáňez, M. Á.; Carretero, J. C. Chem. Sci. 2013, 4, 175.
[19] (a) Itami, K.; Mitsudo, K.; Kamei, T.; Koike, T.; Nokami, T.; Yoshida, J.-I. J. Am. Chem. Soc. 2000, 122, 12013.
(b) Itami, K.; Nokami, T.; Yoshida, J.-I. J. Am. Chem. Soc. 2001, 123, 5600.
(c) Itami, K.; Ushiogi, Y.; Nokami, T.; Ohashi, Y.; Yoshida, J.-I. Org. Lett. 2004, 6, 3695.
(d) Kamei, T.; Itami, K.; Yoshida, J.-I. Adv. Synth. Catal. 2004, 346, 1824.
[20] (a) Huang, C.; Chernyak, N.; Dudnik, A. S.; Gevorgyan, V. Adv. Synth. Catal. 2011, 353, 1285.
(b) Chernyak, N.; Dudnik, A. S.; Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2010, 132, 8270.
(c) Dudnik, A. S.; Chernyak, N.; Huang, C.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 8729.
[21] (a) Ihara, H.; Koyanagi, K.; Suginome, M. Org. Lett. 2011, 13, 2662.
(b) Ihara, H.; Suginome, M. J. Am. Chem. Soc. 2009, 131, 7502.
[22] Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
[23] Aihara, Y.; Chatani, N. Chem. Sci. 2013, 4, 664.
[24] Rouquet, G.; Chatani, N. Chem. Sci. 2013, 4, 2201.
[25] Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030.
[26] Huang, L.; Li, Q.; Wang, C.; Qi, C. J. Org. Chem. 2013, 78, 3030.
[27] Ryabov, A. D.; Sakodinskaya, I. K.; Yatsimirsky, A. K. J. Chem. Soc., Dalton. Trans. 1985, 2629.
[28] Wang, X.; Mei, T.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 7520.
[29] Haffemayer, B.; Gulias, M.; Gaunt, M. J. Chem. Sci. 2011, 2, 312.
[30] (a) He, H.; Liu, W.-B.; Dai, L.-X.; You, S.-L. J. Am. Chem. Soc. 2009, 131, 8346.
(b) Ye, K.-Y.; He, H.; Liu, W.-B.; Dai, L.-X.; Helmchen, G.; You, S.-L. J. Am. Chem. Soc. 2011, 133, 19006.
[31] Liang, Z.; Ju, L.; Kie, Y.; Huang, L.; Zhang, Y. Chem.-Eur. J. 2012, 18, 15816.
[32] Tang, C.; Jiao, N. J. Am. Chem. Soc. 2012, 134, 18924.
[33] Stuart McCallum, J.; Gasdaska, J. R.; Liebeskind, L. S.; Tremont, S. J. Tetrahedron Lett. 1989, 30, 4085.
[34] (a) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Org. Lett. 2013, 15, 1638.
(b) Yadav, M. R.; Rit, R. K.; Sahoo, A. K. Chem.-Eur. J. 2012, 18, 5541.
(c) Rit, R. K.; Yadav, M. R.; Sahoo, A. K. Org. Lett. 2012, 14, 3724.
[35] Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048.
[36] Thirunarukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-H. Angew. Chem., Int. Ed. 2008, 47, 9462.
[37] Dubost, E.; Fossey, C.; Cailly, T.; Rault, S.; Fabis, F. J. Org. Chem. 2011, 76, 6414.
[38] Ren, Z.; Mo, F.; Dong, G. J. Am. Chem. Soc. 2012, 134, 16991.
[39] Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Chem. Commun. 2013, 3703.
[40] (a) Liu, Y.-K.; Lou, S.-J.; Xu, D.-Q.; Xu, Z.-Y. Chem.-Eur. J. 2010, 16, 13590.
(b) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. J. Org. Chem. 2013, 78, 13590.
[41] Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9, 2931.
[42] Chen, Y.; Wang, F.; Zhen, W.; Li, X. Adv. Synth. Catal. 2013, 355, 353.
[43] Zhen, W.; Wang, F.; Zhao, M.; Du, Z.; Li, X. Angew. Chem., Int. Ed. 2012, 51, 11819.
[44] Ma, X.-T.; Tian, S.-K. Adv. Synth. Catal. 2013, 355, 337.
[45] Muralirajan, K.; Cheng, C.-H. Chem.-Eur. J. 2013, 19, 6198.
[46] Lian, Y.; Bergman, R. G.; Lavis, L. D.; Ellman, J. A. J. Am. Chem. Soc. 2013, 135, 7122.
[47] Hafner, A.; Bräse, S. Angew. Chem., Int. Ed. 2012, 51, 3713.
[48] Wang, C.; Chen, H.; Wang, Z.; Chen, J.; Huang, Y. Angew. Chem., Int. Ed. 2012, 51, 7242.
[49] Liu, B.; Fan, Y.; Gao, Y.; Sun, C.; Xu, C.; Zhu, J. J. Am. Chem. Soc. 2013, 135, 468.
[50] (a) Li, W.; Xu, Z.; Sun, P.; Jiang, X.; Fang, M. Org. Lett. 2011, 13, 1286.
(b) Li, W.; Sun, P. J. Org. Chem. 2012, 77, 8362.
(c) Du, B.; Jiang, X.; Sun, P. J. Org. Chem. 2013, 78, 2786.
[51] (a) Zhang, Y.-H.; Shi, B.-F.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 5072.
(b) Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.
(c) Leow, D.; Li, G.; Mei, T.-S.; Yu, J.-Q. Nature 2012, 486, 518.
[52] Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788.
[53] (a) Hennings, D. D.; Iwasa, S.; Rawal, V. H. Tetrahedron Lett. 1997, 38, 6379.
(b) Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2.
[54] (a) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740.
(b) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem. Soc. 2001, 123, 10407.
[55] Wang, X. S.; Lu, Y.; Dai, H. X.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 12203.
[56] Lu, Y.; Leow, D. S.; Wang, X. S.; Engle, K. M.; Yu, J. Q. Chem. Sci. 2011, 2, 967.
[57] (a) Huang, C.; Ghavtadze, N.; Godoi, B.; Gevorgyan, V. Chem.-Eur. J. 2012, 18, 9789.
(b) Huang, C.; Ghavtadze, N.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 17630.
(c) Wang, C.; Ge, H. Chem.-Eur. J. 2011, 17, 14371.
[58] (a) Li, F.; Jiang, T.; Cai, H.; Wang, G. Chin. J. Chem. 2012, 30, 2041.
(b) Meng, X.; Kim, S. Org. Lett. 2013, 15, 1910.
[59] Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S.; Nomura, M. J. Org. Chem. 1998, 63, 5211.
[60] Maehara, A.; Tsurugi, H.; Satoh, T.; Miura, M. Org. Lett. 2008, 10, 1159.
[61] Chiong, H. A.; Pham, Q.-N.; Daugulis, O. J. Am. Chem. Soc. 2007, 129, 9879.
[62] (a) Giri, R.; Maugel, N. L.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510.
(b) Wang, D. H.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2008, 130, 17676.
(c) Mei, T. S.; Giri, R.; Maugel, N.; Yu, J. Q. Angew. Chem., Int. Ed. 2008, 47, 5215.
(d) Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14082.
(e) Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.
(f) Engle, K. M.; Wang, D. H.; Yu, J. Q. J. Am. Chem. Soc. 2010, 132, 14137.
(g) Shi, B.-F.; Zhang, Y.-H.; Lam, J. K.; Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 460.
(h) Cheng, X.-F.; Li, Y.; Su, Y.-M.; Wang, J.-Y.; Sheng, J.; Vora, H. U.; Wnag, X.-S.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 1236.
[63] Horino, H.; Inoue, N. J. Org. Chem. 1981, 46, 4416.
[64] Tremont, S. J.; Hayatur, R. J. Am. Chem. Soc. 1984, 106, 5759.
[65] Noele, M. D. K.; van Strijdonck, G. P. F.; de Vries, A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J. Am. Chem. Soc. 2002, 124, 1586.
[66] Wang, J.-R.; Yang, C.-T.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2007, 48, 5449.
[67] Schimidt, B.; Elizarov, N. Chem. Commun. 2012, 4350.
[68] Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44, 4046.
[69] Loh, T. P.; Zhou, H.; Xu, Y. H.; Chung, W. J. Angew. Chem., Int. Ed. 2009, 48, 5355.
[70] Borgduas, N.; Lough, A. J.; Dong, V. M. Inorg. Chim. Acta 2011, 369, 247.
[71] Giri, R.; Lam, J. K.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 686.
[72] Zhou, B.; Yang, Y.; Liu, S.; Li, Y. Adv. Synth. Catal. 2013, 355, 360.
[73] Yang, X.; Shan, G.; Rao, Y. Org. Lett. 2013, 15, 2334.
[74] Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 11108.
[75] Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 12382.
[76] Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. 1997, 36, 1740.
[77] (a) Muratake, H.; Hayakawa, A.; Natsume, M. Tetrahedron Lett. 1997, 38, 7577.
(b) Muratake, H.; Natsume, M. Tetrahedron Lett. 1997, 38, 7581.
[78] Gandeepan, P.; Parthasarathy, K.; Cheng, C.-H. J. Am. Chem. Soc. 2010, 132, 8569.
[79] Xiao, B.; Gong, T. J.; Xu, J.; Liu, Z. J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 1466.
[80] Xiao, B.; Fu, Y.; Xu, J.; Gong, T. J.; Dai, J. J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468.
[81] Sun, X.; Shan, G.; Sun, Y.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52, 4440.
[82] Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
[83] Yu, M.; Xie, Y.; Xie, C.; Zhang, Y. Org. Lett. 2012, 14, 2164.
[84] Yao, J.; Yu, M.; Zhang, Y. Adv. Synth. Catal. 2012, 354, 3205.
[85] Boebel, T. A.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 7534.
Outlines

/