Reviews

Progresses of Ring Expansion Reaction of Small Transitional Metallacyclic Compounds

  • Zhuo Qingde ,
  • Wang Tongdao ,
  • Zhou Xiaoxi ,
  • Zhang Hong
Expand
  • Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2014-03-24

  Revised date: 2014-04-21

  Online published: 2014-05-05

Supported by

Project supported by the National Natural Science Foundation of China (No. 21272193) and the Natural Science Foundation of Fujian Province (No. 2011J05031).

Abstract

Metallacycles, especially those small rings, play an important role in the field of organometallic and coordination chemistry. They are considered as reactive intermediates in metal promoted or catalyzed reactions including olefin metathesis reactions and alkyne polymerization reactions. Due to the high ring strain, small metallacycles can easily react with unsaturated compounds to produce ring expansion products with lower ring strain. To further understand the importance of small metallacycle intermediates in the catalytic reactions and synthesis methodology, the ring expansion reactions of several typical three-, four- and five-membered metallacycles is summarize.

Cite this article

Zhuo Qingde , Wang Tongdao , Zhou Xiaoxi , Zhang Hong . Progresses of Ring Expansion Reaction of Small Transitional Metallacyclic Compounds[J]. Chinese Journal of Organic Chemistry, 2014 , 34(8) : 1471 -1486 . DOI: 10.6023/cjoc201403050

References

[1] Selected reviews of metallacycles:
(a) Li, Z.; Zhao, B.; Xi, Z. Chemistry 2002, (2), 78 (in Chinese).
(李志平, 赵炳筠, 席振峰, 化学通报, 2002, (2), 78.)
(b) Xi, Z.; Li, Z. Top. Organomet. Chem. 2004, 8, 27.
(c) Negishi, E. Dalton Trans. 2005, 827.
(d) Erker, G.; Kehr, G.; Fröhlich, R. Coord. Chem. Rev. 2006, 250,36.
(e) Rosenthal, U.; Burlakov, V. V.; Bach, M. A.; Beweries, T. Chem. Soc. Rev. 2007, 719.
(f) Suzuki, N.; Hashizume, D. Coord. Chem. Rev. 2010, 254, 1307.
(g) Chen, C.; Xi, C. Chin. Sci. Bull. 2010, 55, 3235.
(h) Beweries, T.; Haehnel, M.; Rosenthal, U. Catal. Sci. Technol. 2013, 3, 18.
(i) Wang, Q.; Lin, C.; Xi, Z. Chin. J. Org. Chem. 2010, 30, 157 (in Chinese).
(王奇峰, 林辰, 席振峰, 有机化学, 2010, 30, 157.)
(j) Mao, K.; Fu, X.; Liu, D.; Li, S.; Liu, Y. Chin. J. Org. Chem. 2013, 33, 780 (in Chinese).
(毛可彬, 付晓平, 刘丹, 李石, 刘元红, 有机化学, 2013, 33, 780.)
[2] (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
(b) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.
[3] (a) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565.
(b) Choi, S.-K.; Gal, Y.-S.; Jin, S.-H.; Kim, H. K. Chem. Rev. 2000, 100, 1645.
[4] (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71.
(b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
[5] Frenking, G.; Fröhlich, N. Chem. Rev. 2000, 100, 717.
[6] Tsuchiya, K.; Kondo, H.; Nagashima H. Organometallics, 2007, 26, 1044.
[7] Yamazaki, H.; Aoki, K.; Yamamoto, Y.; Wakatsuki, Y. J. Am. Chem. Soc. 1975, 97, 3546.
[8] Buchwald, S. L.; Lum, R. T.; Dewan, J. C. J. Am. Chem. Soc. 1986, 108, 7441.
[9] Buchwald, S. L.; Watson, B. T.; Huffman, J. C. J. Am. Chem. Soc. 1986, 108, 7411.
[10] Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5491.
[11] Buijink, J. K. F. K.,; Kloetstra, K. R.; Meetsma, A.; Teuben, J. H. Organometallics 1996, 15, 2523.
[12] Beweries, T.; Fischer, C.; Peitz, S.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Heller, D.; Rosenthal, U. J. Am. Chem. Soc. 2009, 131, 4463.
[13] Mansel, S.; Thomas, D.; Lefeber, C.; Heller, D.; Kempe, R.; Baumann, W.; Rosenthal, U. Organometallics 1997, 16, 2886.
[14] Zhang, S.; Zhang, W.-X.; Zhao, J.; Xi, Z. J. Am. Chem. Soc. 2010, 132, 14042.
[15] Lee, L. W. M.; Piers, W. E.; Parvez, M.; Rettig, S. J.; Young, V. G. Organometallics 1999, 18, 3904.
[16] (a) Schrock, R. R.; Pedersen, S. F.; Churchill, M. R.; Ziller, J. W. Organometallics 1984, 3, 1574.
(b) Zhu, J.; Jia, G.; Lin, Z. Organometallics 2006, 25, 1812.
(c) Mortreux A.; Coutelier, O. J. Mol. Catal. A: Chem. 2006, 254, 96.
[17] Loewe, C.; Shklover V.; Berke, H. Organometallics 1991, 10, 3396.
[18] (a) Padolik, L. L.; Gallucci, J. C.; Wojcicki, A. J. Am. Chem. Soc. 1993, 115, 9986.
(b) Plantevin, V.; Gallucci, J. C.; Wojcicki, A. Inorg. Chim. Acta 1994, 222, 199.
(c) Plantevin, V.; Wojcicki, A. J. Organomet. Chem. 2004, 689, 2000.
[19] (a) Plantevin, V.; Wojcicki, A. J. Organomet. Chem. 2004, 689, 2013.
(b) Wu, H.-P.; Weakley, T. J. R.; Haley, M. M. Chem. Eur. J. 2005, 11, 1191.
[20] Recent reviews of metallabenzenes:
(a) Paneque, M.; Poveda, M. L.; Rendóon, N. Eur. J. Inorg. Chem. 2011, 19.
(b) Jia, G. Coord. Chem. Rev. 2007, 251, 2167.
(c) Bleeke, J. R. Acc. Chem. Res. 2007, 40, 1035.
(d) Wright, L. J. Dalton Trans. 2006, 1821.
(e) Landorf, C. W.; Haley, M. M. Angew. Chem., Int. Ed. 2006, 45, 3914.
(f) Jia, G. Acc. Chem. Res. 2004, 37, 479.
(g) He, G.; Xia, H.; Jia, G. Chin. Sci. Bull. 2004, 49, 1543.
(h) Bleeke, J. R. Chem. Rev. 2001, 101, 1205.
[21] Clark, G. R.; Lu, G.-L.; Roper, W. R.; Wright L. J. Organometallics 2007, 26, 2167.
[22] Poon, K. C.; Liu, L. X.; Guo, T. X.; Li, J.; Sung, H. H. Y.; Williams, I. D.; Lin, Z. Y.; Jia, G. C. Angew. Chem., Int. Ed. 2010, 49, 2759.
[23] (a) Masuda, T.; Higashimura, T. Acc. Chem. Res. 1984, 17, 51.
(b) Katz, T. J.; Sivavec, T. M. J. Am. Chem. Soc. 1985, 107, 737.
(c) Fox, H. H.; Wolf, M. O.; O'Dell, R.; Lin, B. L.; Schrock, R. R.; Wrighton, M. S. J. Am. Chem. Soc. 1994, 116, 2827.
[24] (a) Katz, T. J. Angew. Chem., Int. Ed. 2005, 44, 3010.
(b) Diver, S. T. Coord. Chem. Rev. 2007, 251, 671.
(c) Mori, M. Materials 2010, 3, 2087.
(d) Li, J.; Lee, D. Eur. J. Org. Chem. 2011, 4269.
[25] Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.
[26] (a) Shono, T.; Kurashige, R.; Mukaiyama, R.; Tsubouchi, A.; Takeda, T. Chem. Eur. J. 2007, 13, 4074.
(b) O'Connor, J. M.; Baldridge, K. K.; Vélez, C. L.; Rheingold, A. L.; Moore, C. E. J. Am. Chem. Soc. 2013, 135, 8826.
[27] (a) Doxsee, K. M.; Mouser, J. K. M. Organometallics 1990, 9, 3012.
(b) Doxsee, K. M.; Mouser, J. K. M.; Farahi, J. B. Synlett 1992, 13.
[28] Doxsee, K. M.; Mouser, J. K. M. Tetrahedron Lett. 1991, 32, 1687.
[29] Meinhart, J. D.; Grubbs, R. H. Bull. Chem. Soc. Jpn. 1988, 61, 171.
[30] Heijden, H. V. D.; Hessen, B. Inorg. Chim. Acta 2003, 345, 27.
[31] (a) Stewart, I. C.; Douglas, C. J.; Grubbs, R. H. Org. Lett. 2008, 10, 441.
(b) Geny, A.; Leboeuf, D.; Rouquié, G.; Vollhardt, K. P. C.; Malacria, M.; Gandon, V.; Aubert, C. Chem. Eur. J. 2007, 13, 5408.
[32] Holland, R. L.; Bunker, K. D.; Chen, C. H.; DiPasquale, A. G.; Rheingold, A. L.; Baldridge, K. K.; O'Connor, J. M. J. Am. Chem. Soc. 2008, 130, 10093.
[33] Meinhart, J. D.; Santarsiero, B. D.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 3318.
[34] Wakatsuki, Y.; Miya, S.-Y.; Yamazaki, H. J. Chem. Soc., Dalton. Trans. 1986, 1201.
[35] Werner, H.; Heinemann, A.; Windmüiiller, B.; Steinert, P. Chem. Ber. 1996, 129, 903.
[36] Beckhaus, R.; Sang, J.; Wagner, T.; Ganter, B. Organometallics 1996, 15, 1176.
[37] Holland, R. L.; O'Connor, J. M. Organometallics 2009, 28, 394.
[38] Doxsee, K. M.; Farahi, J. B. J. Am. Chem. Soc. 1988, 110, 7239.
[39] Motz, P. L.; Alexander, J. J.; Ho, D. M. Organometallics 1989, 8, 2589.
[40] Stack, J. G.; Simpson, R. D.; Hollander, F. J.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1990, 112, 2716.
[41] Hartwig, J. F.; Bergman, R. G. Andersen R. A. Organometallics 1991, 10, 3344.
[42] Ajulu, F. A.; Carmichael, D.; Hitchcock, P. B.; Mathey, F.; Meidine, M. F.; Nixon, J. F.; Ricard L.; Riley, M. L. J. Chem. Soc., Chem. Commun. 1992, 750.
[43] Tanabe, M.; Horie, M. Osakada, K. Organometallics, 2003, 22, 373.
[44] Cristóobal, C.; Hernáandez, Y. A.; Lóopez-Serrano, J.; Paneque, M.; Petronilho, A.; Poveda, M. L.; Salazar, V.; Vattier, F.; ÁAlvarez, E.; Maya, C.; Carmona, E. Chem. Eur. J. 2013, 19, 4003.
[45] (a) Takahashi, T.; Xi, Z.; Obora, Y.; Suzuki, N. J. Am. Chem. Soc. 1995, 117, 2665.
(b) Xi, Z.; Fischer, R.; Hara, R.; Sun, W.-H.; Obora, Y.; Suzuki, N.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 1997, 119, 12842.
[46] (a) Sun, X.; Wang, C.; Li, Z.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2004, 126, 7172.
(b) Zhang, W.-X.; Zhang, S.; Sun, X.; Nishiura, M.; Hou, Z.; Xi, Z. Angew. Chem., Int. Ed. 2009, 48, 7227.
(c) Zhang, S.; Sun, X.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2009, 15, 12608.
(d) Zhang, S.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2010, 16, 8419.
(e) Zhang, S.; Zhao, J.; Zhang, W.-X.; Xi, Z. Org. Lett. 2011, 13, 1626.
(f) Zhang, S.; Zhang, W.-X.; Zhao, J.; Xi, Z. Chem. Eur. J. 2011, 17, 2442.
(g) Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2011, 30, 3464.
(h) Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2012, 31, 8370.
(i) Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2014, 33, 8.
[47] (a) Yu, T.; Deng, L.; Zhao, C.; Li, Z.; Xi, Z. Tetrahedron Lett. 2003, 44, 677.
(b) Liu, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2009, 28, 413.
[48] Yu, T.; Sun, X.; Wang, C.; Deng, L.; Xi, Z. Chem. Eur. J. 2005, 11, 1895.
[49] Zhang, W.-X.; Zhang, S.; Xi, Z. Acc. Chem. Res. 2011, 44, 541.
[50] Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Coord. Chem. Rev. 2014, 270, 2.
[51] (a) Xi, Z.; Li, Z. Top. Organomet. Chem. 2004, 8, 27.
(b) Xi, Z. Top. Catal. 2005, 35, 63.
(c) Takahashi, T.; Kuzuba, Y.; Kong, F.; Nakajima, K.; Xi, Z. J. Am. Chem. Soc. 2005, 127, 17188.
(d) Leng, L.; Xi, C.; Shi, Y.; Guo, B. Synlett 2003, 183.
(e) Chen, C.; Xi, C.; Lai, C.; Wang, R.; Hong, X. Eur. J. Org. Chem. 2004, 647.
(f) Leng, L.; Xi, C.; Chen, C.; Lai, C. Tetrahedron Lett. 2004, 45, 595.
(g) Chen, C.; Xi, C.; Liu, Y.; Hong, X. J. Org. Chem. 2006, 71, 5373.
(h) Chen, C.; Yan, X.; Xi, C. Synth. Commun. 2010, 40, 570.
(i) Zhou, Y.; Yan, X.; Chen, C.; Xi, C. Organometallics 2013, 32, 6182.
[52] (a) Shi, L.; Zhou, L.; Kanno, K.-I.; Takahashi, T. J. Heterocycl. Chem. 2011, 48, 517.
(b) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.
(c) Liu, J.; Zhang, W.-X.; Guo, X.; Hou, Z.; Xi, Z. Organometallics 2007, 26, 6812.
[53] Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T. J. Am. Chem. Soc. 2003, 125, 9568.
[54] (a) Xi, Z.; Fan, H.; Mito, S.; Takahashi, T. J. Organomet. Chem. 2003, 682, 108.
(b) Lu, J.; Mao, G.; Zhang, W.; Xi, Z. Chem. Commun. 2005, 4848.
(c) Hu, Q.; Lu, J.; Wang, C.; Wang, C.; Xi, Z. Tetrahedron 2007, 63, 6614.
[55] (a) Xi, Z.; Li, P. Angew. Chem., Int. Ed. 2000, 39, 2950.
(b) Zhao, C.; Li, P.; Cao, X.; Xi, Z. Chem. Eur. J. 2002, 8, 4292.
(c) Xi, Z.; Guo, R.; Mito, S.; Yan, H.; Kanno, K.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2003, 68, 1252.
(d) Chen, C.; Xi, C.; Jiang, Y.; Hong, X. J. Am. Chem. Soc. 2005, 127, 8024.
(e) Chen, C.; Xi, C.; Ai, Z.; Hong, X. Org. Lett. 2006, 8, 4055.
[56] Xi, Z.; Huo, S.; Noguchi, Y.; Takahashi, T. Chem. Lett. 2000, 218.
[57] (a) Chin, C. S.; Kim, M.; Lee, H.; Noh, S.; Ok, K. M. Organometallics 2002, 21, 4785.
(b) Chin, C. S.; Lee, H. Chem. Eur. J. 2004, 10, 4518.
[58] Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 811.
[59] Clark, G. R.; Johns, P. M.; Roper, W. R.; Wright, J. L. Organometallics 2008, 27, 451.
[60] Dalebrook, A. F.; Wright, L. J. Organometallics 2009, 28, 5536.
[61] Clark, G. R.; Johns, P. M.; Roper, W. R. Sohnel, T.; Wright, L. J. Organometallics 2011, 30, 129.
[62] (a) Zhou, S.; Liu, D.; Liu, Y. Organometallics 2004, 23, 5900.
[63] Lin, Y.; Gong, L.; Xu, H.; He, X.; Wen, T.B.; Xia, H. Organometallics 2009, 28, 1524.
[64] (a) Fu, X.; Chen, J.; Li, G.; Liu, Y. Angew. Chem., Int. Ed. 2009, 48, 5500.
(b) Fu, X.; Liu, Y.; Li, Y. Organometallics 2010, 29, 3012.
(c) Fu, X.; Yu, S.; Fan, G.; Liu Y.; Li, Y. Organometallics 2012, 31, 531.
(d) Yu, S.; You, X.; Liu Y. Chem. Eur. J. 2012, 18, 13936.
(e) You, X.; Yu, S.; Liu Y. Organometallics 2013, 32, 5273.
[65] Pellny, P.-M.; Kirchbauer, F. G.; Burlakov, V. V.; Baumann, W.; Spannenberg, A.; Rosenthal, U. J. Am. Chem. Soc. 1999, 121, 8313.
[66] Bender, G.; Kehr, G.; Frohlich, R.; Petersen, J. L.; Erker, G. Chem. Sci. 2012, 3, 3534.
[67] Wang, T.; Zhu, J.; Han, F.; Zhou, C.; Chen, H.; Zhang, H.; Xia, H. Angew. Chem., Int. Ed. 2013, 52, 13361.
[68] (a) Liu, Y.; Gao, H.; Zhou, S. Angew. Chem., Int. Ed. 2006, 45, 4163.
(b) Zhou, Y.; Chen, J.; Zhao, C.; Wang, E.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 5326.
[69] (a) Coperet, C.; Negishi, E.; Xi, Z.; Takahashi, T. Tetrahedron Lett. 1994, 35, 695.
(b) Li, P.; Xi, Z.; Takahashi, T. Chin. J. Chem. 2001, 19, 45.
(c) Zhao, C.; Yan, J.; Xi, Z. J. Org. Chem. 2003, 68, 4355.
(d) Zhao, C.; Lu, J.; Yan, J.; Xi, Z. Tetrahedron Lett. 2003, 44, 6895.
(e) Zhao, C.; Lu, J. Li, Z.; Xi, Z. Tetrahedron 2004, 60, 1417.
[70] Gong, L.; Wu, L.; Lin, Y.; Zhang, H.; Yang, F.; Wen, T. B.; Xia, H. Dalton Trans. 2007, 4122.
[71] (a) Mao, K.; Fan, G.; Liu, Y.; Li, S.; Xu, Y.; Dan, L. Beilstein J. Org. Chem. 2013, 9, 621.
(b) Chen, J.; Liu, Y. Organometallics 2010, 29, 505.
[72] (a) Liu, B.; Zhao, Q.; Wang, H.; Zeng, B.; Cao, X.; Xia, H. Sci. China Chem. 2013, 56, 1105.
(b) Zhang, C.; Zhang, H.; Wei, A.; He, X.; Xia, H. Acta Chim. Sinica 2013, 71, 1373 (in Chinese).
(张春红, 张弘, 魏爱琳, 何旭敏, 夏海平, 化学学报, 2013, 71, 1373.)
[73] Zhang, C.; Zhang, H.; Zhang, L.; Wen, T. B.; He, X.; Xia, H. Organometallics 2013, 32, 3738.
[74] (a) Liu, B.; Wang, H.; Xie, H.; Zeng, B.; Chen, J.; Tao, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5430.
(b) Liu, B.; Zhao, Q.; Wang, H.; Chen, J.; Cao, X.; Cao, Z.; Xia, H. Chin. J. Chem. 2012, 30, 2158.
[75] Liu, B.; Xie, H. J; Wang, H.; Wu, L.; Zhao, Q.; Chen, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5461.
[76] (a) Zhao, Q.; Gong, L.; Xu, C.; Zhu, J.; He, X.; Xia, H. Angew. Chem., Int. Ed. 2011, 50, 1354.
(b) Zhu, C.; Cao, X.; Xia, H. Chin. J. Org. Chem. 2013, 33, 657.
(c) Zhao, Q.; Cao, X.-Y.; Wen, T. B.; Xia, H. Chem. Asian J. 2013, 8, 269.
[77] Zhao, Q.; Zhu, J.; Huang, Z.; Cao, X.-Y.; Xia, H. Chem. Eur. J. 2012, 18, 11597.
[78] Chen, J; Zhang, C.; Xie, T.; Wen, T. B.; Zhang, H.; Xia, H. Organometallics 2013, 32, 3993.
Outlines

/