Chin. J. Org. Chem. ›› 2014, Vol. 34 ›› Issue (8): 1471-1486.DOI: 10.6023/cjoc201403050 Previous Articles Next Articles
Reviews
卓庆德, 王铜道, 周小茜, 张弘
收稿日期:
2014-03-24
修回日期:
2014-04-21
发布日期:
2014-05-05
通讯作者:
张弘
E-mail:zh@xmu.edu.cn
基金资助:
Zhuo Qingde, Wang Tongdao, Zhou Xiaoxi, Zhang Hong
Received:
2014-03-24
Revised:
2014-04-21
Published:
2014-05-05
Supported by:
Share
Zhuo Qingde, Wang Tongdao, Zhou Xiaoxi, Zhang Hong. Progresses of Ring Expansion Reaction of Small Transitional Metallacyclic Compounds[J]. Chin. J. Org. Chem., 2014, 34(8): 1471-1486.
[1] Selected reviews of metallacycles:(a) Li, Z.; Zhao, B.; Xi, Z. Chemistry 2002, (2), 78 (in Chinese).(李志平, 赵炳筠, 席振峰, 化学通报, 2002, (2), 78.)(b) Xi, Z.; Li, Z. Top. Organomet. Chem. 2004, 8, 27.(c) Negishi, E. Dalton Trans. 2005, 827.(d) Erker, G.; Kehr, G.; Fröhlich, R. Coord. Chem. Rev. 2006, 250,36.(e) Rosenthal, U.; Burlakov, V. V.; Bach, M. A.; Beweries, T. Chem. Soc. Rev. 2007, 719.(f) Suzuki, N.; Hashizume, D. Coord. Chem. Rev. 2010, 254, 1307.(g) Chen, C.; Xi, C. Chin. Sci. Bull. 2010, 55, 3235.(h) Beweries, T.; Haehnel, M.; Rosenthal, U. Catal. Sci. Technol. 2013, 3, 18.(i) Wang, Q.; Lin, C.; Xi, Z. Chin. J. Org. Chem. 2010, 30, 157 (in Chinese).(王奇峰, 林辰, 席振峰, 有机化学, 2010, 30, 157.)(j) Mao, K.; Fu, X.; Liu, D.; Li, S.; Liu, Y. Chin. J. Org. Chem. 2013, 33, 780 (in Chinese).(毛可彬, 付晓平, 刘丹, 李石, 刘元红, 有机化学, 2013, 33, 780.)[2] (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.(b) Vougioukalakis, G. C.; Grubbs, R. H. Chem. Rev. 2010, 110, 1746.[3] (a) Buchmeiser, M. R. Chem. Rev. 2000, 100, 1565.(b) Choi, S.-K.; Gal, Y.-S.; Jin, S.-H.; Kim, H. K. Chem. Rev. 2000, 100, 1645.[4] (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71.(b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.[5] Frenking, G.; Fröhlich, N. Chem. Rev. 2000, 100, 717.[6] Tsuchiya, K.; Kondo, H.; Nagashima H. Organometallics, 2007, 26, 1044.[7] Yamazaki, H.; Aoki, K.; Yamamoto, Y.; Wakatsuki, Y. J. Am. Chem. Soc. 1975, 97, 3546.[8] Buchwald, S. L.; Lum, R. T.; Dewan, J. C. J. Am. Chem. Soc. 1986, 108, 7441.[9] Buchwald, S. L.; Watson, B. T.; Huffman, J. C. J. Am. Chem. Soc. 1986, 108, 7411.[10] Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5491.[11] Buijink, J. K. F. K.,; Kloetstra, K. R.; Meetsma, A.; Teuben, J. H. Organometallics 1996, 15, 2523.[12] Beweries, T.; Fischer, C.; Peitz, S.; Burlakov, V. V.; Arndt, P.; Baumann, W.; Spannenberg, A.; Heller, D.; Rosenthal, U. J. Am. Chem. Soc. 2009, 131, 4463.[13] Mansel, S.; Thomas, D.; Lefeber, C.; Heller, D.; Kempe, R.; Baumann, W.; Rosenthal, U. Organometallics 1997, 16, 2886.[14] Zhang, S.; Zhang, W.-X.; Zhao, J.; Xi, Z. J. Am. Chem. Soc. 2010, 132, 14042.[15] Lee, L. W. M.; Piers, W. E.; Parvez, M.; Rettig, S. J.; Young, V. G. Organometallics 1999, 18, 3904.[16] (a) Schrock, R. R.; Pedersen, S. F.; Churchill, M. R.; Ziller, J. W. Organometallics 1984, 3, 1574.(b) Zhu, J.; Jia, G.; Lin, Z. Organometallics 2006, 25, 1812.(c) Mortreux A.; Coutelier, O. J. Mol. Catal. A: Chem. 2006, 254, 96.[17] Loewe, C.; Shklover V.; Berke, H. Organometallics 1991, 10, 3396.[18] (a) Padolik, L. L.; Gallucci, J. C.; Wojcicki, A. J. Am. Chem. Soc. 1993, 115, 9986.(b) Plantevin, V.; Gallucci, J. C.; Wojcicki, A. Inorg. Chim. Acta 1994, 222, 199.(c) Plantevin, V.; Wojcicki, A. J. Organomet. Chem. 2004, 689, 2000.[19] (a) Plantevin, V.; Wojcicki, A. J. Organomet. Chem. 2004, 689, 2013.(b) Wu, H.-P.; Weakley, T. J. R.; Haley, M. M. Chem. Eur. J. 2005, 11, 1191.[20] Recent reviews of metallabenzenes:(a) Paneque, M.; Poveda, M. L.; Rendóon, N. Eur. J. Inorg. Chem. 2011, 19.(b) Jia, G. Coord. Chem. Rev. 2007, 251, 2167.(c) Bleeke, J. R. Acc. Chem. Res. 2007, 40, 1035.(d) Wright, L. J. Dalton Trans. 2006, 1821.(e) Landorf, C. W.; Haley, M. M. Angew. Chem., Int. Ed. 2006, 45, 3914.(f) Jia, G. Acc. Chem. Res. 2004, 37, 479.(g) He, G.; Xia, H.; Jia, G. Chin. Sci. Bull. 2004, 49, 1543.(h) Bleeke, J. R. Chem. Rev. 2001, 101, 1205.[21] Clark, G. R.; Lu, G.-L.; Roper, W. R.; Wright L. J. Organometallics 2007, 26, 2167.[22] Poon, K. C.; Liu, L. X.; Guo, T. X.; Li, J.; Sung, H. H. Y.; Williams, I. D.; Lin, Z. Y.; Jia, G. C. Angew. Chem., Int. Ed. 2010, 49, 2759.[23] (a) Masuda, T.; Higashimura, T. Acc. Chem. Res. 1984, 17, 51.(b) Katz, T. J.; Sivavec, T. M. J. Am. Chem. Soc. 1985, 107, 737.(c) Fox, H. H.; Wolf, M. O.; O'Dell, R.; Lin, B. L.; Schrock, R. R.; Wrighton, M. S. J. Am. Chem. Soc. 1994, 116, 2827.[24] (a) Katz, T. J. Angew. Chem., Int. Ed. 2005, 44, 3010.(b) Diver, S. T. Coord. Chem. Rev. 2007, 251, 671.(c) Mori, M. Materials 2010, 3, 2087.(d) Li, J.; Lee, D. Eur. J. Org. Chem. 2011, 4269.[25] Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117.[26] (a) Shono, T.; Kurashige, R.; Mukaiyama, R.; Tsubouchi, A.; Takeda, T. Chem. Eur. J. 2007, 13, 4074.(b) O'Connor, J. M.; Baldridge, K. K.; Vélez, C. L.; Rheingold, A. L.; Moore, C. E. J. Am. Chem. Soc. 2013, 135, 8826.[27] (a) Doxsee, K. M.; Mouser, J. K. M. Organometallics 1990, 9, 3012.(b) Doxsee, K. M.; Mouser, J. K. M.; Farahi, J. B. Synlett 1992, 13.[28] Doxsee, K. M.; Mouser, J. K. M. Tetrahedron Lett. 1991, 32, 1687.[29] Meinhart, J. D.; Grubbs, R. H. Bull. Chem. Soc. Jpn. 1988, 61, 171.[30] Heijden, H. V. D.; Hessen, B. Inorg. Chim. Acta 2003, 345, 27.[31] (a) Stewart, I. C.; Douglas, C. J.; Grubbs, R. H. Org. Lett. 2008, 10, 441.(b) Geny, A.; Leboeuf, D.; Rouquié, G.; Vollhardt, K. P. C.; Malacria, M.; Gandon, V.; Aubert, C. Chem. Eur. J. 2007, 13, 5408.[32] Holland, R. L.; Bunker, K. D.; Chen, C. H.; DiPasquale, A. G.; Rheingold, A. L.; Baldridge, K. K.; O'Connor, J. M. J. Am. Chem. Soc. 2008, 130, 10093.[33] Meinhart, J. D.; Santarsiero, B. D.; Grubbs, R. H. J. Am. Chem. Soc. 1986, 108, 3318.[34] Wakatsuki, Y.; Miya, S.-Y.; Yamazaki, H. J. Chem. Soc., Dalton. Trans. 1986, 1201.[35] Werner, H.; Heinemann, A.; Windmüiiller, B.; Steinert, P. Chem. Ber. 1996, 129, 903.[36] Beckhaus, R.; Sang, J.; Wagner, T.; Ganter, B. Organometallics 1996, 15, 1176.[37] Holland, R. L.; O'Connor, J. M. Organometallics 2009, 28, 394.[38] Doxsee, K. M.; Farahi, J. B. J. Am. Chem. Soc. 1988, 110, 7239.[39] Motz, P. L.; Alexander, J. J.; Ho, D. M. Organometallics 1989, 8, 2589.[40] Stack, J. G.; Simpson, R. D.; Hollander, F. J.; Bergman, R. G.; Heathcock, C. H. J. Am. Chem. Soc. 1990, 112, 2716.[41] Hartwig, J. F.; Bergman, R. G. Andersen R. A. Organometallics 1991, 10, 3344.[42] Ajulu, F. A.; Carmichael, D.; Hitchcock, P. B.; Mathey, F.; Meidine, M. F.; Nixon, J. F.; Ricard L.; Riley, M. L. J. Chem. Soc., Chem. Commun. 1992, 750.[43] Tanabe, M.; Horie, M. Osakada, K. Organometallics, 2003, 22, 373.[44] Cristóobal, C.; Hernáandez, Y. A.; Lóopez-Serrano, J.; Paneque, M.; Petronilho, A.; Poveda, M. L.; Salazar, V.; Vattier, F.; ÁAlvarez, E.; Maya, C.; Carmona, E. Chem. Eur. J. 2013, 19, 4003.[45] (a) Takahashi, T.; Xi, Z.; Obora, Y.; Suzuki, N. J. Am. Chem. Soc. 1995, 117, 2665.(b) Xi, Z.; Fischer, R.; Hara, R.; Sun, W.-H.; Obora, Y.; Suzuki, N.; Nakajima, K.; Takahashi, T. J. Am. Chem. Soc. 1997, 119, 12842.[46] (a) Sun, X.; Wang, C.; Li, Z.; Zhang, S.; Xi, Z. J. Am. Chem. Soc. 2004, 126, 7172.(b) Zhang, W.-X.; Zhang, S.; Sun, X.; Nishiura, M.; Hou, Z.; Xi, Z. Angew. Chem., Int. Ed. 2009, 48, 7227.(c) Zhang, S.; Sun, X.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2009, 15, 12608.(d) Zhang, S.; Zhang, W.-X.; Xi, Z. Chem. Eur. J. 2010, 16, 8419.(e) Zhang, S.; Zhao, J.; Zhang, W.-X.; Xi, Z. Org. Lett. 2011, 13, 1626.(f) Zhang, S.; Zhang, W.-X.; Zhao, J.; Xi, Z. Chem. Eur. J. 2011, 17, 2442.(g) Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2011, 30, 3464.(h) Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2012, 31, 8370.(i) Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2014, 33, 8.[47] (a) Yu, T.; Deng, L.; Zhao, C.; Li, Z.; Xi, Z. Tetrahedron Lett. 2003, 44, 677.(b) Liu, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Organometallics 2009, 28, 413.[48] Yu, T.; Sun, X.; Wang, C.; Deng, L.; Xi, Z. Chem. Eur. J. 2005, 11, 1895.[49] Zhang, W.-X.; Zhang, S.; Xi, Z. Acc. Chem. Res. 2011, 44, 541.[50] Zhao, J.; Zhang, S.; Zhang, W.-X.; Xi, Z. Coord. Chem. Rev. 2014, 270, 2.[51] (a) Xi, Z.; Li, Z. Top. Organomet. Chem. 2004, 8, 27.(b) Xi, Z. Top. Catal. 2005, 35, 63.(c) Takahashi, T.; Kuzuba, Y.; Kong, F.; Nakajima, K.; Xi, Z. J. Am. Chem. Soc. 2005, 127, 17188.(d) Leng, L.; Xi, C.; Shi, Y.; Guo, B. Synlett 2003, 183.(e) Chen, C.; Xi, C.; Lai, C.; Wang, R.; Hong, X. Eur. J. Org. Chem. 2004, 647.(f) Leng, L.; Xi, C.; Chen, C.; Lai, C. Tetrahedron Lett. 2004, 45, 595.(g) Chen, C.; Xi, C.; Liu, Y.; Hong, X. J. Org. Chem. 2006, 71, 5373.(h) Chen, C.; Yan, X.; Xi, C. Synth. Commun. 2010, 40, 570.(i) Zhou, Y.; Yan, X.; Chen, C.; Xi, C. Organometallics 2013, 32, 6182.[52] (a) Shi, L.; Zhou, L.; Kanno, K.-I.; Takahashi, T. J. Heterocycl. Chem. 2011, 48, 517.(b) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635.(c) Liu, J.; Zhang, W.-X.; Guo, X.; Hou, Z.; Xi, Z. Organometallics 2007, 26, 6812.[53] Xi, Z.; Sato, K.; Gao, Y.; Lu, J.; Takahashi, T. J. Am. Chem. Soc. 2003, 125, 9568.[54] (a) Xi, Z.; Fan, H.; Mito, S.; Takahashi, T. J. Organomet. Chem. 2003, 682, 108.(b) Lu, J.; Mao, G.; Zhang, W.; Xi, Z. Chem. Commun. 2005, 4848.(c) Hu, Q.; Lu, J.; Wang, C.; Wang, C.; Xi, Z. Tetrahedron 2007, 63, 6614.[55] (a) Xi, Z.; Li, P. Angew. Chem., Int. Ed. 2000, 39, 2950.(b) Zhao, C.; Li, P.; Cao, X.; Xi, Z. Chem. Eur. J. 2002, 8, 4292.(c) Xi, Z.; Guo, R.; Mito, S.; Yan, H.; Kanno, K.; Nakajima, K.; Takahashi, T. J. Org. Chem. 2003, 68, 1252.(d) Chen, C.; Xi, C.; Jiang, Y.; Hong, X. J. Am. Chem. Soc. 2005, 127, 8024.(e) Chen, C.; Xi, C.; Ai, Z.; Hong, X. Org. Lett. 2006, 8, 4055.[56] Xi, Z.; Huo, S.; Noguchi, Y.; Takahashi, T. Chem. Lett. 2000, 218.[57] (a) Chin, C. S.; Kim, M.; Lee, H.; Noh, S.; Ok, K. M. Organometallics 2002, 21, 4785.(b) Chin, C. S.; Lee, H. Chem. Eur. J. 2004, 10, 4518.[58] Elliott, G. P.; Roper, W. R.; Waters, J. M. J. Chem. Soc., Chem. Commun. 1982, 811. [59] Clark, G. R.; Johns, P. M.; Roper, W. R.; Wright, J. L. Organometallics 2008, 27, 451.[60] Dalebrook, A. F.; Wright, L. J. Organometallics 2009, 28, 5536.[61] Clark, G. R.; Johns, P. M.; Roper, W. R. Sohnel, T.; Wright, L. J. Organometallics 2011, 30, 129.[62] (a) Zhou, S.; Liu, D.; Liu, Y. Organometallics 2004, 23, 5900.[63] Lin, Y.; Gong, L.; Xu, H.; He, X.; Wen, T.B.; Xia, H. Organometallics 2009, 28, 1524.[64] (a) Fu, X.; Chen, J.; Li, G.; Liu, Y. Angew. Chem., Int. Ed. 2009, 48, 5500.(b) Fu, X.; Liu, Y.; Li, Y. Organometallics 2010, 29, 3012.(c) Fu, X.; Yu, S.; Fan, G.; Liu Y.; Li, Y. Organometallics 2012, 31, 531.(d) Yu, S.; You, X.; Liu Y. Chem. Eur. J. 2012, 18, 13936.(e) You, X.; Yu, S.; Liu Y. Organometallics 2013, 32, 5273.[65] Pellny, P.-M.; Kirchbauer, F. G.; Burlakov, V. V.; Baumann, W.; Spannenberg, A.; Rosenthal, U. J. Am. Chem. Soc. 1999, 121, 8313.[66] Bender, G.; Kehr, G.; Frohlich, R.; Petersen, J. L.; Erker, G. Chem. Sci. 2012, 3, 3534.[67] Wang, T.; Zhu, J.; Han, F.; Zhou, C.; Chen, H.; Zhang, H.; Xia, H. Angew. Chem., Int. Ed. 2013, 52, 13361.[68] (a) Liu, Y.; Gao, H.; Zhou, S. Angew. Chem., Int. Ed. 2006, 45, 4163.(b) Zhou, Y.; Chen, J.; Zhao, C.; Wang, E.; Liu, Y.; Li, Y. J. Org. Chem. 2009, 74, 5326.[69] (a) Coperet, C.; Negishi, E.; Xi, Z.; Takahashi, T. Tetrahedron Lett. 1994, 35, 695.(b) Li, P.; Xi, Z.; Takahashi, T. Chin. J. Chem. 2001, 19, 45.(c) Zhao, C.; Yan, J.; Xi, Z. J. Org. Chem. 2003, 68, 4355.(d) Zhao, C.; Lu, J.; Yan, J.; Xi, Z. Tetrahedron Lett. 2003, 44, 6895.(e) Zhao, C.; Lu, J. Li, Z.; Xi, Z. Tetrahedron 2004, 60, 1417.[70] Gong, L.; Wu, L.; Lin, Y.; Zhang, H.; Yang, F.; Wen, T. B.; Xia, H. Dalton Trans. 2007, 4122.[71] (a) Mao, K.; Fan, G.; Liu, Y.; Li, S.; Xu, Y.; Dan, L. Beilstein J. Org. Chem. 2013, 9, 621.(b) Chen, J.; Liu, Y. Organometallics 2010, 29, 505.[72] (a) Liu, B.; Zhao, Q.; Wang, H.; Zeng, B.; Cao, X.; Xia, H. Sci. China Chem. 2013, 56, 1105.(b) Zhang, C.; Zhang, H.; Wei, A.; He, X.; Xia, H. Acta Chim. Sinica 2013, 71, 1373 (in Chinese).(张春红, 张弘, 魏爱琳, 何旭敏, 夏海平, 化学学报, 2013, 71, 1373.)[73] Zhang, C.; Zhang, H.; Zhang, L.; Wen, T. B.; He, X.; Xia, H. Organometallics 2013, 32, 3738.[74] (a) Liu, B.; Wang, H.; Xie, H.; Zeng, B.; Chen, J.; Tao, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5430.(b) Liu, B.; Zhao, Q.; Wang, H.; Chen, J.; Cao, X.; Cao, Z.; Xia, H. Chin. J. Chem. 2012, 30, 2158.[75] Liu, B.; Xie, H. J; Wang, H.; Wu, L.; Zhao, Q.; Chen, J.; Wen, T. B.; Cao, Z.; Xia, H. Angew. Chem., Int. Ed. 2009, 48, 5461.[76] (a) Zhao, Q.; Gong, L.; Xu, C.; Zhu, J.; He, X.; Xia, H. Angew. Chem., Int. Ed. 2011, 50, 1354.(b) Zhu, C.; Cao, X.; Xia, H. Chin. J. Org. Chem. 2013, 33, 657.(c) Zhao, Q.; Cao, X.-Y.; Wen, T. B.; Xia, H. Chem. Asian J. 2013, 8, 269.[77] Zhao, Q.; Zhu, J.; Huang, Z.; Cao, X.-Y.; Xia, H. Chem. Eur. J. 2012, 18, 11597.[78] Chen, J; Zhang, C.; Xie, T.; Wen, T. B.; Zhang, H.; Xia, H. Organometallics 2013, 32, 3993. |
[1] | Jie Liu, Feng Han, Shuangyan Li, Tianyu Chen, Jianhui Chen, Qing Xu. Transition Metal-Free Selective Aerobic Olefination of Methyl N-Heteroarenes with Alcohols [J]. Chinese Journal of Organic Chemistry, 2024, 44(2): 573-583. |
[2] | Hongqiong Zhao, Miao Yu, Dongxue Song, Qi Jia, Yingjie Liu, Yubin Ji, Ying Xu. Progress on Decarboxylation and Hydroxylation of Carboxylic Acids [J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 70-84. |
[3] | Wenfang Wang. Recent Progress in Transition-Metal-Catalyzed Asymmetric C—H Borylation [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3146-3166. |
[4] | Xiaoyang Gao, Ruirui Zhai, Xun Chen, Shuojin Wang. Recent Progress in C—H Bond Activation Reaction with Vinylene Carbonate [J]. Chinese Journal of Organic Chemistry, 2023, 43(9): 3119-3134. |
[5] | Yuzhuo Chen, Hongmei Sun, Liang Wang, Fangzhi Hu, Shuaishuai Li. Research Progress on Construction of Heterocyclic Skeletons Based on α-Hydride Transfer Strategy [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2323-2337. |
[6] | Sifan Dong, Haolong Li, Yuan Qin, Shiming Fan, Shouxin Liu. Research Progress of Amino Acids as Transient Directing Groups in C—H Bond Activation Reactions [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2351-2367. |
[7] | Zhongrong Xu, Jieping Wan, Yunyun Liu. Transition Metal-Free C—H Thiocyanation and Selenocyanation Based on Thermochemical, Photocatalytic and Electrochemical Process [J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2425-2446. |
[8] | Xiaojing Hu, Feixiang Guo, Runqing Zhu, Bingqi Zhou, Tao Zhang, Lizhen Fang. Synthesis of p-Alkoxy Phenol and Its Application after Dearomatization [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2239-2244. |
[9] | Jiao Qin, Jie Chen, Yan Su. Synthesis of 2,2,6,6-Tetramethylpiperidin-1-yl-2-(2-cyanophenyl)-acetate by Transition Metal-Free Radical Cleavage Reaction from α-Bromoindanone [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 2171-2177. |
[10] | Yangyang Chu, Zhaobin Han, Kuiling Ding. Progresses in the Application of Kinetic Resolution in Transition Metal Catalyzed Asymmetric (Transfer) Hydrogenation [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1934-1951. |
[11] | Guangli Xu, Jing Xu, Haidong Xu, Xiang Cui, Xingzhong Shu. Research Progress of Transition Metal Catalyzed Synthesis of 1,3- Conjugated Diene Compounds from Alkenes and Alkynes [J]. Chinese Journal of Organic Chemistry, 2023, 43(6): 1899-1933. |
[12] | Ke Jing, Panke Zhang, Senmiao Xu. Application of 1,4-Azaborines in Organic and Transition Metal Catalysis [J]. Chinese Journal of Organic Chemistry, 2023, 43(5): 1742-1750. |
[13] | Hairui Jia, Zaozao Qiu. Recent Advances in Transition Metal-Catalyzed B—H Bond Activation for Synthesis of o-Carborane Derivatives with B—Heteroatom Bond [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1045-1068. |
[14] | Kongchuan Wu, Kaihong Lu, Jianbin Lin, Huijun Zhang. Research Progress in Ortho-C—H Bond Functionalization of Rylene Diimides [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 1000-1011. |
[15] | Xing Yang, Xu Liu, Lijia Wang. Recent Progress in Transition Metal Catalyzed C(sp3)—H Nitrene Insertion Reactions Assisted by Directing Groups [J]. Chinese Journal of Organic Chemistry, 2023, 43(3): 914-923. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||