Chinese Journal of Organic Chemistry >
Progress on the Sulfonylation and Desulfonylative Reactions of Sulfonyl Chlorides
Received date: 2015-12-11
Revised date: 2016-01-11
Online published: 2016-02-02
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21262030, 20962017).
Being an active class of electrophiles, the desulfitative cross-couplings of sulfonyl chlorides has emerged as a hot issue nowadays. Under suitable temperature and transitional metal catalysis, sulfonyl chlorides efficiently cross-coupled with a wide range of nucleophiles which were potential in several important organic synthesis. The transitional metal catalyzed desulfitative coupling reactions of sulfonyl chlorides are briefly reviewed and are compared with their corresponding sulfonylation reaction in order to find the key factors that determine desulfonation and further providing reliable proposal for future researches.
Key words: sulfonyl chloride; cross-coupling reaction; desulfitative
Fu Ying , Zhao Xingling , Hou Bo . Progress on the Sulfonylation and Desulfonylative Reactions of Sulfonyl Chlorides[J]. Chinese Journal of Organic Chemistry, 2016 , 36(6) : 1184 -1196 . DOI: 10.6023/cjoc201512017
[1] Blum, J. Tetrahedron Lett. 1966, 7, 3041.
[2] Herbrandson, H. F.; Kelly, W. S.; Versnel, V. J. Am. Chem. Soc. 1958, 80, 3301.
[3] Truce, W. E.; Vriesen, C. W. J. Am. Chem. Soc. 1953, 75, 5032.
[4] Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674.
[5] (a) Yuan, K.; Soulé, J.-F.; Doucet, H. ACS Catal. 2015, 5, 978.
(b) Zhang, S.; Yang, S.; Huang, L.; Zhao, B.; Cheng, K.; Qi, C. Chin. J. Org. Chem. 2015, 35, 2259 (in Chinese). (张诗浓, 杨胜虎, 黄乐浩, 赵保丽, 程凯, 齐陈泽, 有机化学, 2015, 35, 2259.)
[6] Oestreich, M. The Mizoroki-Heck Reaction, John Wiley & Sons, Ltd., Münster, Germany, 2009.
[7] (a) Kasahara, A.; Izumi, T.; Kudou, N.; Azami, H.; Yamamato, S. Chem. Ind. 1988, 51.
(b) Kasahara, A.; Izumi, T.; Miyamoto, K.; Sakai, T. Chem. Ind. 1989, 192.
[8] (a) Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. Tetrahedron Lett. 1989, 30, 975.
(b) Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1990, 2207.
[9] Dubbaka, S. R.; Vogel, P. Chem. Eur. J. 2005, 11, 2633.
[10] Dubbaka, S. R.; Zhao, D.; Fei, Z.; Rao Volla, C. M.; Dyson, P. J.; Vogel, P. Synlett 2006, 3155.
[11] Yuan, K.; Sang, R.; Soulé, J.-F.; Doucet, H. Catal. Sci. Technol. 2015, 5, 2904.
[12] Jafarpour, F.; Olia, M. B. A.; Hazrati, H. Adv. Synth. Catal. 2013, 355, 3407.
[13] Kusunuru, A. K.; Yousuf, S. K.; Tatina, M.; Mukherjee, D. Eur. J. Org. Chem. 2015, 459.
[14] (a) Kamigata, N.; Ozaki, J.; Kobayashi, M. Chem. Lett. 1985, 705.
(b) Kamigata, N.; Ozaki, J.; Kobayashi, M. J. Org. Chem. 1985, 50, 5045.
(c) Kameyama, M.; Shimezawa, H.; Satoh, T.; Kamigata, N. Bull. Chem. Soc. Jpn. 1988, 61, 1231.
[15] (a) Barata-Vallejo, S.; Postigo, A. Coord. Chem. Rev. 2013, 257, 3051.
(b) Merino, E.; Nevado, C. Chem. Soc. Rev. 2014, 43, 6598.
(c) Barata-Vallejo, S.; Torviso, M. R.; Lantaño, B.; Bonesi, S. M.; Postigo, A. J. Fluorine Chem. 2014, 161, 134.
[16] Kamigata, N.; Fukushima, T.; Terakawa, Y.; Yoshida, M.; Sawada, H. J. Chem. Soc., Perkin Trans. 1 1991, 627.
[17] (a) Asscher, M.; Vofsi, D. J. Chem. Soc. 1964, 4962.
(b) Orochov, A.; Asscher, M.; Vofsi, D. J. Chem. Soc. B 1969, 255.
[18] Liu, L. K.; Chi, Y.; Jen, K.-Y. J. Org. Chem. 1980, 45, 406.
[19] Xu, Y.-H.; Wang, M.; Lu, P.; Loh, T.-P. Tetrahedron 2013, 69, 4403.
[20] Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.
[21] Labadie, S. S. J. Org. Chem. 1989, 54, 2496.
[22] Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292.
[23] Dubbaka, S. R.; Steunenberg, P.; Vogel, P. Synlett 2004, 1235.
[24] (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(c) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359.
(d) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633.
[25] (a) Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413.
(b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550.
[26] Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387.
[27] (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(b) Hillier, A. C.; Grasa, G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet. Chem. 2002, 653, 69.
(c) Herrmann, W A.; Reisiner, C. P.; Spieger, M. J. Organomet. Chem. 1998, 557, 93.
(d) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804.
[28] Bandgar, B. P.; Bettigeri, S. V.; Phopase, J. Org. Lett. 2004, 6, 2105.
[29] (a) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60, 1060.
(b) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003, 125, 11818.
[30] Dubbaka, S. R.; Vogel, P. Org. Lett. 2004, 6, 95.
[31] Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
[32] (a) Özdemir, I.; Gürbüz, N.; Seçkin, T.; Çetinkaya, B. Appl. Organomet. Chem. 2005, 19, 633.
(b) Yan, C.; Zeng, X.; Zhang, W.; Luo, M. J. Organomet. Chem. 2006, 691, 3391.
[33] Schwarz, J.; Böhm, V. P. W.; Gardiner, M. G.; Grosche, M.; Herrmann, W. A.; Hieringer, W.; Raudaschl-Sieber, G. Chem. Eur. J. 2000, 6, 1773.
[34] (a) Zhao, Y.; Zhou, Y.; Ma, D.; Liu, J.; Zhang, T. Y.; Zhang, H. Org. Biomol. Chem. 2003, 1, 1643.
(b) Byun, J. W.; Lee, Y. S. Tetrahedron Lett. 2004, 45, 1837.
(c) Kim, J. H.; Jun, B. H.; Byun, J. W.; Lee, Y. S. Tetrahedron Lett. 2004, 45, 5827.
(d) Steel, P. G.; Teasdale, C. W. T. Tetrahedron Lett. 2004, 45, 8977.
(e) Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 2305.
[35] Kang, T.; Feng, Q.; Luo, M. Synlett 2005, 2305.
[36] Zhang, S.; Zeng, X.; Wei, Z.; Zhao, D.; Kang, T.; Zhang, W.; Yan, M.; Luo, M. Synlett 2006, 1891.
[37] Tamao, K.; Sumitani, K.; Kumuda, M. J. Am. Chem. Soc. 1972, 94, 4374.
[38] Gilman, H.; Fothergill, R. E. J. Am. Chem. Soc. 1929, 51, 3501.
[39] Sun, P.; Wang, L.; Zhang, Y. Tetrahedron Lett. 1997, 31, 5549.
[40] Dubbaka, S. R.; Vogel, P. Tetrahedron Lett. 2006, 47, 3345.
[41] Fu, Y.; Zhu, W.; Zhao, X.; Hügel, H.; Wu, Z.; Su, Y.; Du, Z.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2014, 12, 4295.
[42] Rao Volla, C. M.; Vogel, P. Angew. Chem., Int. Ed. 2008, 47, 1305.
[43] Volla, C. M. R.; Markovi?, D.; Dubbaka, S. R.; Vogel, P. Eur. J. Org. Chem. 2009, 6281.
[44] Rao Volla, C. M.; Dubbaka, S. R.; Vogel, P. Tetrahedron 2009, 65, 504.
[45] (a) Plenio, H. Angew. Chem., Int. Ed. 2008, 47, 6954.
(b) Chinchilla, R.; Nájera, C. Chem. Rev. 2007, 107, 874.
[46] Dubbaka, S. R.; Vogel, P. Adv. Synth. Catal. 2004, 346, 1793.
[47] Zeng, X.; Ilies, L.; Nakamura, E. Org. Lett. 2012, 14, 954.
[48] Wang, L.; Zhu, H.; Che, J.; Yang, Y.; Zhu, G. Tetrahedron Lett. 2014, 55, 1011.
[49] Deng, G.; Sun, T.; Zhou, J. Chin. J. Org. Chem. 2012, 32, 1872 (in Chinese). (邓桂胜, 孙腾飞, 周佳, 有机化学, 2012, 32, 1872.)
[50] Yadav, J. S.; Reddy, B. V. S.; Reddy, M. S. Synlett 2003, 1722.
[51] Marshall, J. A.; Chobanian, H. R.; Yanik, M. M. Org. Lett. 2001, 3, 4107.
[52] Denmark, S. E.; Tymonko, S. A. J. Org. Chem. 2003, 68, 9151.
[53] Deng, G. S.; Sun, T. F. Chin. Chem. Lett. 2012, 23, 1115.
[54] Chatgilialoglu, C.; Mozziconacci, O.; Tamba, M.; Bobrowski, K.; Kciuk, G.; Bertrand, M. P.; Gastaldi, S.; Timokhin, V. I. J. Phys. Chem. A 2012, 116, 7623.
[55] Zeng, X. M.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2011, 133, 17638.
[56] Chen, C.; Su, J.; Tong, X. Chem. Eur. J. 2013, 19, 5014.
[57] Deng, G. B.; Wang, Z. Q.; Xia, J. D.; Qian, P. C.; Song, R. J.; Hu, M.; Gong, L. B.; Li, J. H. Angew. Chem., Int. Ed. 2013, 52, 1535.
[58] Liu, Y.; Zhang, J.-L.; Zhou, M.-B.; Song, R.-J.; Li, J.-H. Chem. Commun. 2014, 50, 14412.
[59] Sore, H. F.; Galloway, W. R. J. D.; Spring, D. R. Chem. Soc. Rev. 2012, 41, 1845.
[60] Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1989, 54, 268.
[61] (a) Huang, T.; Li, C.-T. Tetrahedron Lett. 2002, 43, 403.
(b) Koike, T.; Mori, A. Synlett. 2003, 1850.
(c) Wolf, C.; Lerebours, R. Org Lett. 2004, 6, 1147.
(d) Wolf, C.; Lerebours, R. Synthesis 2005, 2287.
(e) Alacid, E.; Nàjera, C. Adv. Synth. Catal. 2006, 348, 945.
[62] Diederich, F.; de Meijere, A. Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, Weinheim, 2004.
[63] (a) Pan, C.; Liu, M.; Zhao, L.; Wu, H.; Ding, J.; Cheng, J. Cat. Commun. 2008, 9, 1685.
(b) Ju, J.; Nam, H.; Jung, H. M.; Lee, S. Tetrahedron Lett. 2006, 47, 8673.
(c) Ranu, B. C.; Dey, R.; Chattopadhyay, K. Tetrahedron Lett. 2008, 49, 3430.
(d) Napier, S.; Marcuccio, S. M.; Tye, H.; Whittaker, M. Tetrahedron Lett. 2008, 49, 3939.
(e) Riggleman, S.; DeShong, P. J. Org. Chem. 2003, 68, 8106.
[64] Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486.
[65] Michael Seganish, W.; DeShong P. Org. Lett. 2004, 6, 4379.
[66] (a) Yoshida, J. I.; Tamao, K.; Takahashi, M.; Kumada, M. Tetrahedron Lett. 1978, 19, 2161.
(b) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, T.; Uchida, T.; Kumada, K. Organometallics 1982, 1, 542.
(c) Hagiwara, E.; Gouda, K.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1997, 38, 439.
(d) Matsuhashi, H.; Kuroboshi, M.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1994, 35, 6507.
(e) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788.
(f) Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007, 46, 3556.
[67] Cheng, K.; Hu, S.; Zhao, B.; Zhang, X.-M.; Qi, C. J. Org. Chem. 2013, 78, 5022.
[68] Miao, H.; Wang, F.; Zhou, S.; Zhang, G.; Li, Y. Org. Biomol. Chem. 2015, 13, 4647.
[69] Zhang, W.; Liu, F.; Li, K.; Zhao, B. Appl. Organomet. Chem. 2014, 28, 379.
[70] (a) Sandmeyer, T. Ber. Dtsch. Chem. Ges. 1884, 17, 1633.
(b) Galli, C. Chem. Rev. 1988, 88, 765.
(c) Rosenmund, K. W.; Struck, E. Chem. Ber. 1919, 52, 1749.
(d) Von Braun, J.; Manz, G. Justus Liebigs Ann. Chem. 1931, 488, 111.
(e) Connor, J. A.; Leeming, S. W.; Price, R. J. J. Chem. Soc., Perkin Trans. 1 1990, 1127.
(f) Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987, 87, 779.
[71] (a) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev., 2011, 40, 5049.
(b) Ushkov, A. V.; Grushin, V. V. J. Am. Chem. Soc., 2011, 133, 10999.
[72] Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew. Chem., Int. Ed. 2010, 49, 8918.
[73] Chen, J.; Sun, Y.; Liu, B.; Liu, D.; Cheng, J. Chem. Commun. 2012, 48, 449.
[74] Miura, M.; Hashimoto, H.; Itoh, K.; Nomura, M. Chem. Lett. 1990, 19, 459.
[75] Kashiwabara, T.; Tanaka, M. Tetrahedron Lett. 2005, 46, 7125.
[76] Zhao, Q.; Chen, L.; Lang, H.; Wu, S.; Wang, L. Chin. J. Chem. 2015, 33, 535.
[77] Okude, Y.; Hirano, S.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 3179.
[78] Takai, K.; Kuroda, T.; Nakatsukasa, S.; Oshima, K.; Nozakil, H. Tetrahedron Lett. 1985, 26, 5585.
[79] Takai, K.; Kimura, K.; Kuroda, T.; Hiyama1, T.; Nozaki, H. Tetrahedron Lett. 1983, 24, 5281.
[80] (a) Takai, K.; Tagashira, M.; Kuroda, T.; Oshima, K.; Utimoto, K.; Nozaki, H. J. Am. Chem. Soc. 1986, 108, 6048.
(b) Jin, H.; Uenishi, J.; Christ, W. J.; Kishi, Y. J. Am. Chem. Soc. 1986, 108, 5644.
(c) A. Fürstner, Chem. Rev. 1999, 99, 991.
[81] Volla, C. M. R.; Markovi?, D.; Laclef, S.; Vogel, P. Chem. Eur. J. 2010, 16, 8984.
[82] (a) Seebach, D. Angew. Chem., Int. Ed. 1969, 8, 639.
(b) Seebach, D. Angew. Chem., Int. Ed. 1979, 18, 239.
/
〈 |
|
〉 |