ARTICLE

Facile Synthesis of Benzoxazinone Derivatives via Palladium Catalyzed Intramolecular Amination

  • Zhou Panpan ,
  • Guan Mingyu ,
  • Zhang Jingyu ,
  • Xu Fan ,
  • Zhao Yingsheng
Expand
  • a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123;
    b Soochow Institute for Energy and Materials Innovation, College of Physics, Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123;
    c Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Suzhou 215123

Received date: 2017-03-06

  Revised date: 2017-04-08

  Online published: 2017-04-21

Supported by

Project supported by the National Natural Science Foundation of China (No. 21572149) and the Young National Natural Science Foundation of China (Nos. 21402133, 21403148).

Abstract

Benzoxazinone and its derivatives are well-known as a broad-spectrum of physiological activities compounds. Herein we report a novel approach for the synthesis of benzoxazine derivatives via a N,O-bindentate directing assisted Pd-catalyzed intramolecular amination reactions. Various benzoxazinone derivatives are obtained in moderate to good yields. The directing group can be removed under mild condition, highlighting potential synthetic utility of this method.

Cite this article

Zhou Panpan , Guan Mingyu , Zhang Jingyu , Xu Fan , Zhao Yingsheng . Facile Synthesis of Benzoxazinone Derivatives via Palladium Catalyzed Intramolecular Amination[J]. Chinese Journal of Organic Chemistry, 2017 , 37(8) : 2028 -2033 . DOI: 10.6023/cjoc201703012

References

[1] Sawada, Y.; Yanai, T.; Nakagawa, H.; Tsukamoto, Y.; Yokoi, S.; Yanagi, M.; Toya, T.; Sugizaki, H.; Kato, Y.; Shirakura, H.; Watanabe, T.; Yajima, Y.; Kodama, S.; Masui, A. Pest Manage. Sci. 2003, 59, 36.
[2] (a) Anderluh, P. S.; Anderluh, M.; Ilaš, J.; Mravljak, J.; Dolenc, M. S.; Stegnar, M.; Kikelj, D. J. Med. Chem. 2005, 48, 3110.
(b) Rajitha, C.; Dubey, P. K.; Sunku, V.; Piedrafita, F. J.; Veeramaneni, V. R.; Pal, M. Eur. J. Med. Chem. 2011, 46, 4887.
[3] Macchiarulo, A.; Costantino, G.; Daniele Fringuelli, D.; Vecchiarelli, A.; Schiaffella, F.; Fringuelli, R. Biol. Med. Chem. 2002, 10, 3415.
[4] (a) Feng, R.; Houseman, J. G.; Downe, A. E. R. Pestic. Biol. Physiol. 1992, 42, 203.
(b) Campos, F.; Atkinson, J.; Arnason, J. T.; Philogéne, B. J. R.; Morand, P.; Werstiuk N. H.; Timmins, G. J. Chem. Ecol. 1988, 14, 989.
(c) Campos, F.; Atkinson, J.; Arnason, J. T.; Philogéne, B. J. R.; Morand, P.; Werstiuk N. H.; Timmins, G. J. Chem. Ecol. 1989, 15, 1989.
[5] Huang, M. Z.; Huang, K. L.; Ren, Y. G.; Lei, M. X.; Huang, L.; Hou, Z. K.; Ou, X. M. J. Agric. Food. Chem. 2005, 53, 7908.
[6] Holly, F. W.; Cope, A. C. J. Am. Chem. Soc. 1944, 66, 1875.
[7] (a) Russell, V. M.; Koenig, J. L.; Low, H. Y.; Ishida, H. J. Appl. Polym. Sci. 1998, 70, 1413.
(b) Shen, S. B.; Ishida, H. J. Polym. Sci., Part B:Polym. Phys. 1999, 37, 3257.
(c) Takeichi, T.; Kawauchi, T.; Agag, T. Polym. J. 2008, 40, 1121.
(d) Xiang, H.; Ling, H.; Wang, J.; Song, L.; Gu, Y. Polym. Compos. 2005, 26, 563.
[8] Hamilton, R. H.; Bandurski, R. S. Cereal Chem. 1962, 39, 107.
[9] (a) Zuniga, G. E.; Argandona, V. H.; Niemeyer, H. M.; Corcuera, L. J. Phytochemistry 1983, 22, 2665.
(b) Erich, G.; Wolfgang, E.; Bacher, A.; Frey, M.; Gierl, A. Phytochemistry 1997, 45, 715.
[10] (a) Rajachandrashekar, V.; Vineel, B. G.; Venkataiah S. Pharm. Chem. 2014, 6, 7.
(b) Rajitha, C.; Dubey, P. K.; Dubey, P. K.; Sunku, V.; Veeramaneni, V. R.; Pal, M. J. Heterocycl. Chem. 2013, 50, 630.
(c) Armitage, M.; Bret, G.; Choudary, B. M.; Kingswood, M.; Loft, M.; Moore, S.; Smith,S.; Urquhart, M. W. J. Org. Process Res. Dev. 2012, 16, 1626.
(d)Macías, F. A.; Marín, D.; Bastidas, A.O.; Chinchilla, D.;Simonet, A. M.; Molinillo, J. M. G. J. Agric. Food Chem. 2006, 54, 991.
(e) Ramesh, C.; Raju, B. R.; Kavala, V.; Kuo, C. W.; Yao, C. F. Tetrahedron 2011, 67, 1187.
(f) Gangloff, A. R.; Brown, J.; Jong, R.; Dougan, D. R.; Grimshaw, C. E.; Hixon, M.; Jennings, A.; Kamran, R.; Kiryanov, A.; Connell, S.; Taylor, E. J. Biol. Med. Chem. Lett. 2013, 23, 4501.
(g) Sams, A. G. Hentzer, M.; Mikkelsen, G. K.; Larsen, K.; Bundgaard, C.; Plath, N.; Christoffersen, C. T.; Andersen, B. B. J. Med. Chem. 2010, 53, 6386.
[11] (a) Sharifi, A.; Barazandeh, M.; Abaee, M. S.; Mirzaei, M. Terahedron Lett. 2010, 51, 1852.
(b) Brahma, K.; Das, B.; Chowdhury, C. Terahedron 2014, 70, 5863.
(c) Konda, S.; Raparthi, S.; Bhaskar, K.; Munaganti, R. K.; Guguloth, V.; Nagarapu, L.; Akkewar, D. M. Bioorg. Med. Chem. Lett. 2015, 25, 1643.
(d) Borate, H. B.; Maujan, S. R.; Sawargave, S. P.; Chandavarkar, M. A.; Vaiude, S. R.; Joshi, V. A.; Wakharkar, R. D.; Ramkilyer. Bioorg. Med. Chem. Lett. 2010, 20, 722.
[12] Zuo, H.; Li, Z. B.; Ren, F. K.; Jalck, J. R.; Meng, L. J.; Ahn, C.; Shin, D. S. Terahedron Lett. 2008, 64, 9669.
[13] Chen, D. B.; Shen, G. D.; Bao, W. L. Org. Biomol. Chem. 2009, 7, 4067.
[14] Min, E. Z.; Wu, W. Green Chemistry and Chemical Engineering, Chemical Industry Press, Beijing, 2000, pp. 22~24(in Chinese). (闵恩泽, 吴巍, 绿色化学与化工, 北京, 化学化工出版社, 北京, 2000, pp. 22~24.)
[15] (a) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
(b) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965.
[16] (a) Kim, J.; Sim, M.; Kim, N.; Hong, S. Chem. Sci. 2015, 6, 3611.
(b) Castro, L. C. M.; Chatani, N. Chem. Eur. J. 2014, 20, 4548.
[17] Chen, G.; Shigenari, T.; Jain, P.; Zhang, Z. P.; Jin, Z.; He, J.; Li, S. H.; Mapelli, C.; Miller, M. M.; Poss, M. A.; Scola, P. M.; Yeung, K. S.; Yu, J. Q. J. Am. Chem. Soc. 2015, 137, 3338.
[18] Guan, M. Y.; Pang. Y. B.; Zhang, J. Y.; Zhao, Y. S. Chem. Commun. 2016, 52, 7043.
[19] He, G.; Lu, C. X.; Zhao, Y. S.; Nack, W. A.; Chen, G. Org. Lett. 2012, 14, 2944.

Outlines

/