Notes

Synthesis of α-Alkoxycarbonyl-α-siloxyamides by the Reaction of a Carbamoylsilane with α-Ketoesters

  • Li Weidong ,
  • Han Shenghua ,
  • Lui Yanhong ,
  • Chen Jianxin
Expand
  • a College of Chemistry and Material Science, Shanxi Normal University, Linfen 041004;
    b College of Chemistry and Engineering, Shanxi Datong University, Datong 037009

Received date: 2017-03-08

  Revised date: 2017-04-17

  Online published: 2017-05-17

Supported by

Project supported by the Shanxi Province Foundation for Returness Overseas Scientists (No. 0713), the Natural Science Foundation of Shanxi Province (No. 2012011046-9), and the Foundation of the Modern College of Arts and Science, Shanxi Normal University (No. WL2016CXCY-YJ-30).

Abstract

N,N-Dimethylcarbamoyl(trimethyl)silane reacted with a series of α-ketoesters in anhydrous toluene at 60℃ to afford α-alkoxycarbonyl-α-siloxy amide derivatives in good yields (70%~99%). When the alkyl of α-ketoesters was L-2-isopropyl-5-methylcyclohexyl, the reactions possess stereo selectivity. The experimental results showed that the electronic property of the substituted group on the aryl ring affected both the reaction ratio and the yields of products. The structures of the products were characterized by element analysis, 1H NMR, 13C NMR and IR spectra. A reaction mechanism is proposed. The mild and no catalyst conditions, simple procedure, less byproducts and good yields provide an effective method for the preparation of α-alkoxycarbonyl-α-hydroxy amides.

Cite this article

Li Weidong , Han Shenghua , Lui Yanhong , Chen Jianxin . Synthesis of α-Alkoxycarbonyl-α-siloxyamides by the Reaction of a Carbamoylsilane with α-Ketoesters[J]. Chinese Journal of Organic Chemistry, 2017 , 37(9) : 2423 -2429 . DOI: 10.6023/cjoc201703018

References

[1] Miao, C.-B.; Wang, Y.-H.; Xing, M.-L.; Lu, X.-W.; Sun, X.-Q.; Yang, H.-T. J. Org. Chem. 2013, 78, 11584.
[2] Park, J.-H.; Chang, J.-S.; El-Gamal, M. I.; Choi, W.-K.; Lee, W. S.; Chung, H. J.; Kim, H.-I.; Cho, Y.-J.; Lee, B.-S.; Jeon, H. R.; Lee, Y. S.; Choi, Y. W.; Lee, J.; Oh, C. H. Bioorg. Med. Chem. Lett. 2010, 20, 5895.
[3] Pritchard, D. R.; Wilden, J. D. Tetrahedron Lett. 2010, 51, 1819.
[4] Siliphaivanh, P.; Harrington, P.; Witter, D.; Ott, K.; Tempest, P.; Kattar, S.; Kral, A. M.; Fleming, J. C.; Deshmukh, S. V.; Harsch, A. Bioorg. Med. Chem. Lett. 2007, 17, 4619.
[5] Amada, H.; Matsuda, D.; Bohno, A. WO 2011034215, 2011[Chem. Abstr. 2011, 154, 385279].
[6] Yang, K.; Huang, J.; Eisele, F. WO 2013163889, 2013[Chem. Abstr. 2013, 159, 699243].
[7] Zhu, J.; Klunder, A. J. H.; Zwanenburg, B. Tetrahedron Lett. 1994, 35, 2787.
[8] Christoffers, J.; Werner, T.; Frey, W.; Baro, A. Chem.-Eur. J. 2004, 10, 1042.
[9] Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.; Bergquist, P. R. J. Nat. Prod. 2000, 63, 79.
[10] Racv, L. D.; Frey, W.; Ivanov, I. C. Synlett 2004, 1584.
[11] Christoffers, J.; Baro, A.; Werner, T. Adv. Synth. Catal. 2004, 346, 143.
[12] Zhang, J.; Sarma, K. D.; Curran. T. T.; Belmont, D. T.; Davidson, J. G. J. Org. Chem. 2005, 70, 5890.
[13] Li, S.; Wang, S. J. Heterocycl. Chem. 2008, 45, 1875.
[14] Wang, J.-W.; Yuan, Y.-C.; Xiong, R.; Zhang, D.; Du, Y.-F.; Zhao, K. Org. Lett. 2012, 14, 2210.
[15] Li, Z.; Lian, M.; Yang, F.; Meng, Q.; Gao, Z. Eur. J. Org. Chem. 2014, 3491.
[16] Zou, L.; Wang, B.; Mu, H.; Zhang, H.; Song, Y.; Qu, J. Org. Lett. 2013, 15, 3106.
[17] Li, D.-M.; Schroder, K.; Bitterlich, B.; Tse, M. K.; Beller, M. Tetrahedron Lett. 2008, 49, 5976.
[18] Liang, Y.-F.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53, 548.
[19] Yu, J.; Cui, J.-A.; Zhang, C. Eur. J. Org. Chem. 2010, 7020.
[20] Asahara, H.; Nishiwaki, N. J. Org. Chem. 2014, 79, 11735.
[21] Li, F.; Zhou, W.; Zheng, L.-S.; Li, L.; Zheng, Z.-J.; Xu, L.-W. Synth. Commun. 2014, 44, 2861.
[22] Dong, C.; Song, T.; Bei, X.-F.; Cui, Y.-M.; Xu, Z.; Xu, L.-W. Catal. Sci. Technol. 2015, 5, 4755.
[23] Xing, P.; Zang, W.; Huang, Z.-G.; Zhan, Y.-X.; Zhu, C.-J.; Jing, B. Synlett 2012, 2269.
[24] Wei, Y.-L.; Huang, W.-S.; Cui, Y.-M.; Yang, K.-F.; Xu, Z.; Xu, L.-W. RSC Adv. 2015, 5, 3098.
[25] Tong, W.-T.; Liu, H.; Chen, J.-X. Tetrahedron Lett. 2015, 56, 1335.
[26] Liu, H.; Guo, Q.-L.; Chen, J.-X. Tetrahedron Lett. 2015, 56, 5747.
[27] Guo, Q.-L.; Wen, X.-P.; Chen, J.-X. Tetrahedron 2016, 72, 8117.
[28] Yao, Y.; Li, W.-T.; Chen, J.-X. Chin. J. Org. Chem. 2014, 34, 2124(in Chinese). (姚远, 李伟东, 陈建新, 有机化学, 2014, 34, 2124.)
[29] Yao, Y.; Li, W.-T.; Tong, W.-T.; Chen, J.-X. Chin. J. Org. Chem. 2015, 35, 223(in Chinese). (姚远, 李伟东, 仝文婷, 陈建新, 有机化学, 2015, 35, 223.)
[30] Liu, Y.-H.; Cao, P.; Chen, J.-X. Tetrahedron Lett. 2016, 57, 937.
[31] Ma, F.; Liu, H.; Chen, J.-X. Tetrahedron Lett. 2016, 57, 5246.
[32] Li, W.-D.; Liu, Y.-H.; Chen, J.-X. Tetrahedron Lett. 2015, 56, 4328.
[33] Chen, J.-X.; Cunico, R. F. Tetrahedron Lett. 2002, 43, 8595.
[34] Cunico, R. F.; Pandey, R. K. J. Org. Chem. 2005, 70, 9048.
[35] Cunico, R. F.; Chen, J.-X. Synth. Commun. 2003, 33, 1963.
[36] Xiang, J.-M.; Chen, J.-C.; Li, B.-L. Chin. J. Org. Chem. 2009, 29, 392(in Chinese). (向纪明, 陈久存, 李宝林, 有机化学, 2009, 29, 392.)
[37] Meng, Q.-H.; Zhu, L.-F.; Zhang, Z.-G. J. Org. Chem. 2008, 73, 7209.
[38] Xiang, J.-M.; Li, B.-L. Chem. J. Chin. Univ. 2010, 31, 68(in Chinese). (向纪明, 李宝林, 高等学校化学学报, 2010, 31, 68.)

Outlines

/