Chinese Journal of Organic Chemistry >
Advances for the Ruthenium Complexes-Based Homogeneous Catalytic Hydrogenation of Oxalates to Ethylene Glycol
Received date: 2017-03-10
Revised date: 2017-05-02
Online published: 2017-05-17
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21473142, 91545115, 21473145) and the Innovative Research Team of China (Nos. IRT_14R31, J1310024).
Hydrogenation of oxalates is one of the important organic reactions, which has an ultimate use for the industrial production of ethylene glycol. The studies on the ruthenium complexes-based homogeneous catalytic reaction systems are herein summarized. With the focus on the catalytic reaction systems, the important factors with significant influences on the oxalate transformation efficiency as well as the product selectivity are discussed, including temperature, H2 pressure, catalyst concentration, reaction duration, additives, and so on. The catalytic reaction mechanisms are also discussed in detail, where the mechanism for the H2-heterolysis promoted under the metal-ligand cooperation for the oxalate hydrogenation to ethylene glycol is enhanced. This study would be useful for designing the new catalyst applicable in industry.
Zhang Yiwei , Chen Yilin , Fang Xiaolong , Yuan Youzhu , Zhu Hongping . Advances for the Ruthenium Complexes-Based Homogeneous Catalytic Hydrogenation of Oxalates to Ethylene Glycol[J]. Chinese Journal of Organic Chemistry, 2017 , 37(9) : 2275 -2286 . DOI: 10.6023/cjoc201703021
[1] (a) Jiang, Z. Synthetic Technology and Application 2010, 25(4), 27(in Chinese). (江镇海, 合成技术及应用, 2010, 25(4), 27.)
(b) Huang, G.; Li, X.; Yang, Y.; Qu, J. Petrochem. Technol. Appl. 2015, 33, 75(in Chinese).(黄格省, 李雪静, 杨延翔, 曲静波, 石化技术与应用, 2015, 33, 75.)
[2] (a) Li, D.; Wang, H. Modern Chem. Ind. 2017, 37(1), 5(in Chinese). (李代红, 王洪波, 现代化工, 2017, 37(1), 5.)
(b) Liu, Z. Chem. Ind. Eng. Proc. 2013, 32, 1214(in Chinese). (刘宗语, 化工进展, 2013, 32, 1214.)
(c) Chen, W.; Sun, J.; Zhang, J.; Zhang, S.; Hua, W. Chem. Ind. Eng. Proc. 2014, 33, 1740(in Chinese). (成卫国, 孙剑, 张军平, 张锁江, 华炜, 化工进展, 2014, 33, 1740.)
[3] (a) Gaylord, N. G. J. Chem. Educ. 1957, 34, 367.
(b) Hudlicky, M. Reductions in Organic Chemistry, ACS, Washington, DC, 1996.
[4] (a) Modler, R. F.; Gubler, R.; Inoguchi, Y. Detergent Alchols, CEH Marketing Research Report, 2004.
(b) Hong, W. S. Natural Detergent Alcohols by a Vapour Phase Ester Hydrogenation Process, PPP Review 93-2-1, 2004.
(c) Cant, N. W.; Trimm, D. L.; Turek, T. Catal. Rev. Sci. Eng. 1994, 36, 645.
[5] March, J. Advanced Organic Chemistry:Reactions Mechanisms and Structure, 4th ed., Wiley-Interscience, New York, 1992, p. 1213.
[6] (a) Rylander, P. N. Catalytic Hydrogenation in Organic Syntheses, Academic Press, New York, 1979.
(b) de Vries, J. G.; Elsevier, C. J. Handbook of Heterogeneous Hydrogenation for Organic Synthesis, Weily-VCH, Weinheim, 2007.
[7] (a) Yue, H.-R.; Zhao, Y.-J.; Ma, X.-B.; Gong, J.-L. Chem. Soc. Rev. 2012, 41, 4218.
(b) Zhao, Y.; Zhao, S.; Wang, B.; Lv, J.; Ma, X. Chem. Indu. Eng. Prog. 2013, 32, 721(in Chinese). (赵玉军, 赵硕, 王博, 吕静, 马新宾, 化工进展, 2013, 32, 721.)
(c) Jin, E.-L.; Zhang, Y.-L.; He, L.-L.; Harris, H. G.; Teng, B.-T.; Fan, M.-H. Appl. Catal. A:Gen. 2014, 476, 158.
(d) Higman, C.; Tam, S. Chem. Rev. 2014, 114, 1673.
(e) Li, J.; Duan, X.; Lin, H.; Ye, L.; Yuan, Y. Petrochem. Technol. 2014, 43, 985(in Chinese). (李建辉, 段新平, 林海强, 叶林敏, 袁友珠, 石油化工, 2014, 43, 985.)
(f) Li, S.-M.; Wang, Y.; Zhang, J.; Wang, S.-P.; Xu, Y.; Zhao, Y.-J.; Ma, X.-B. Ind. Eng. Chem. Res. 2015, 54, 1243.
[8] (a) Bayón, J. C.; Claver, C.; Masdeu-Bultó, A. M. WO 2003093208, 2003[Chem. Abstr. 2003, 139, 366612].
(b) Pope, S. J. A.; Champness, N. R.; Reid, G. J. Chem. Soc., Dalton Trans. 1997, 1639.
[9] Seyden-Penne, J. Reductions by the Allumino-and Borohydride in Organic Synthesis, 2nd ed.; Wiley-VCH, New York, 1997.
[10] (a) Turek, T.; Trimm, D.; Cant, N. Catal. Rev. -Sci. Eng. 1994, 36, 645.
(b) Pouilloux, Y.; Autin, F.; Barrault, J. Catal. Today 2000, 63, 87.
[11] Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. A. Chem. Soc. Rev. 2015, 44, 3808.
[12] (a) Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783.
(b) Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.
(c) De Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J. Synthesis 1994, 1007.
(d) Ashby, E. C. Acc. Chem. Res. 1988, 21, 414.
[13] Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1984, 22, 353.
[14] (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Frediani, P.; Piacenti, F. J. Mol. Catal. 1985, 29, 269.
(b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Organomet. Chem. 1986, 299, 233.
(c) Matteoli, U.; Bianchi, M.; Menchi, G.; Piacenti, F. J. Mol. Catal. 1988, 44, 347.
[15] (a) Matteoli, U.; Bianchi, M.; Menchi, G.; Piacenti, F. J. Mol. Catal. 1991, 64, 257.
(b) Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F.; Ianelli, S.; Nardelli, M. J. Organomet. Chem. 1995, 498, 177.
[16] Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.
[17] Kara, Y.; Wada, K. Chem. Lett. 1991, 20, 553.
[18] van Engelen, M. C.; Teunissen, H. T.; de Vries, J. G.; Elsevier, C. J. J. Mol. Catal. A:Chem. 2003, 206, 185.
[19] Boardman, B.; Hanton, M. J.; van Rensburg, H.; Tooze, R. P. Chem. Commun. 2006, 2289.
[20] Bayón, J. C.; Claver, C.; Masdeu-Bultó, A. M. Coord. Chem. Rev. 1999, 193~195, 73.
[21] Hanton, M. J.; Tin, S.; Boardman, B. J.; Miller, P. J. Mol. Catal. A:Chem. 2011, 346, 70.
[22] Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5, 3228.
[23] Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.
[24] Eveline, J.; Jongbloed, L. S.; Tromp, D. S.; Martin, L.; Bas, D. B.; Elsevier, C. J. ChemSusChem 2013, 6, 1737.
[25] (a) Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
(b) Pàmies, O.; Bäckvall, J. E. Chem. Eur. J. 2001, 7, 5052.
(c) Fulton, J. R.; Holland, A. W.; Fox, D. J.; Vergman, R. G. Acc. Chem. Res. 2002, 35, 44.
(d) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201.
[26] (a) Yamakawa, M.; Ito, H.; Noyori, R. J. Am. Chem. Soc. 2000, 122, 1466.
(b) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40.
(c) Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
(d) Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 13490.
[27] (a) Abdur-Rashid, K.; Clapham, S. E.; Hadzovic, A.; Harvey, J. N.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2002, 124, 15104.
(b) Abdur-Rashid, K.; Faatz, M.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2001, 123, 7473.
(c) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870.
(d) Abdur-Rashid, K.; Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Adv. Synth. Catal. 2005, 347, 571.
[28] (a) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700.
(b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2008, 130, 11979.
(c) Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2011, 133, 9666.
(d) John, J. M.; Takebayashi, S.; Dabral, N.; Miskolzie, M.; Bergens, S. H. J. Am. Chem. Soc. 2013, 135, 8578.
[29] Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.
[30] (a) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Angew. Chem., Int. Ed. 2012, 51, 13041.
(b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem., Int. Ed. 2013, 52, 4744.
[31] Li, W.; Xie, J.; Yuan, M.; Zhou, Q. Green Chem. 2014, 16, 4081.
[32] Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113.
[33] (a) Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D. Chem. Commun. 2011, 47, 8349.
(b) Yang, X. ACS Catal. 2012, 2, 964.
[34] (a) He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54.
(b) Wang, Y.; Duan, X.; Zheng, J.; Lin, H.; Yuan, Y.; Ariga, H.; Takakusagi, S.; Asakura, K. Catal. Sci. Technol. 2012, 2, 1637.
(c) Huang, Y.; Ariga, H.; Zheng, X.; Duan, X.; Takakusagi, S.; Asakura, K.; Yuan, Y. J. Catal. 2013, 307, 74.
(d) Zheng, J.; Lin, H.; Wang, Y.; Zheng, X.; Duan, X.; Yuan, Y. J. Catal. 2013, 297, 110.
(e) Zheng, X.; Lin, H.; Zheng, J.; Duan, X.; Yuan, Y. ACS Catal. 2013, 3, 2738.
(f) Li, M.; Ye, L.; Zheng, J.; Fang, H.; Kroner, A.; Yuan, Y.; Tsang, S. C. E. Chem. Commun. 2016, 52, 2569.
(g) Li, M.; Zheng, J.; Qu, J.; Liao, F.; Raine, E.; Kuo, W. C. H.; Su, S. S.; Po, P.; Yuan, Y.; Tsang, S. C. E. Sci. Rep. 2016, 6, 20527.
(h) Zheng, J.; Duan, X.; Lin, H.; Gu, Z.; Fang, H.; Li, J.; Yuan, Y. Nanoscale 2016, 8, 5959.
[35] Fang, X.; Zhang, C.; Chen, J.; Zhu, H.; Yuan, Y. RSC Adv. 2016, 6, 45512.
/
〈 |
|
〉 |