Chinese Journal of Organic Chemistry >
Progress of Fluorescent Bio-probe Based on Water-Soluble Boron-dipyrromethene
Received date: 2017-06-15
Revised date: 2017-09-11
Online published: 2017-10-11
Supported by
Project supported by the National Natural Science Foundation of China (No. 21676187).
Recently, the fluorescent bio-probe based on water-soluble boron-dipyrromethene (BODIPY) obtains enormous progress on structural optimization and functional modification, and becomes novel high-performance biological imaging materials owing to the development of hydrophilic modification. Focusing on the methods for improving the hydrophilicity of BODIPY, the water-soluble BODIPYs have been classified as ionic probe, electrically-neutral probe and amphiphilic probe. The research progress on the application of water-soluble BODIPY dyes in field of biology and medicine since 2006 has been summarized in this review, such as detection of necessary and pathogenicbiological chemical components, early detection and intervention of cancer, labelling drug delivery, marking specific organelles, real-time monitoring of biochemical and property changes with cells, andphotodynamic therapy. The merits of methods for improving the hydrophilicity and main issues of current studies have been summed up. The hypothesis for future directions has also been put forward.
Lu Bowei , Meng Shuxian , Feng Yaqing . Progress of Fluorescent Bio-probe Based on Water-Soluble Boron-dipyrromethene[J]. Chinese Journal of Organic Chemistry, 2018 , 38(2) : 350 -362 . DOI: 10.6023/cjoc201706018
[1] Jung, D.; Min, K.; Jung, J. Mol. BioSyst. 2013, 9, 862.
[2] Boens, N.; Leen, V.; Dehaen, W. Chem. Soc. Rev. 2012, 41, 1130.
[3] Lavis, L.; Raines, R. ACS Chem. Biol. 2008, 3, 142.
[4] Vos, D. W.; Pardoen, J. A.; Van, K. J. Recl. Trav. Chim. Pays-Bas 1977, 96, 306.
[5] Qin, W. W.; Barush, M. Chem. Phys. Chem. 2005, 6, 2343.
[6] Wories, H.; Koek, J.; Lodder, G. Recl. Trav. Chim. Pays-Bas 1985, 104, 288.
[7] Nierth, A.; Kobitski, A.; Nienhaus, G.; Jaschke A. J. Am. Chem. Soc. 2010, 132, 2646.
[8] Yao, H.; Zhu, X.; Guo, X. Anal. Chem. 2016, 88, 9014.
[9] Li, P.; Fang, L.; Zhou, H.; Zhang, W.; Wang, X.; Li, N.; Zhong, H.; Tang, B. Chem. -Eur. J. 2011, 17, 10520..
[10] Zhang, J.; Bao, X.; Zhou, J. Biosens. Bioelectron. 2016, 85, 164.
[11] Zhu, H.; Fan, J.; Mu, H. Sci. Rep. 2016, 6, 35627.
[12] Kamiya, M.; Johnsson, K. Anal. Chem. 2010, 82, 6472.
[13] Matsui, K.; Umezawa, Y.; Shindo, T.; Fujii, D.; Citterio, K.; Suzuki, K. Chem. Commun. 2011, 47, 10407.
[14] Khoerunnisa; Mazrad, Z.; In, I.; Park, S. Biosens. Bioelectron. 2017, 90, 394.
[15] Atilgan, S.; Ekmekci, Z.; Dogan, A. L.; Guc, D.; Akkaya, E. U. Chem. Commun. 2006, 4398.
[16] He, H.; Lo, P.; Yeung, S.; Fong, W.; Dennis, K. J. Med. Chem. 2011, 54, 3097.
[17] Turan, I.; Cakmak, F.; Yildirim, D. Chem. -Eur. J. 2014, 20, 16088.
[18] Niu, L.; Guan, Y.; Chen, Y. J. Am. Chem. Soc. 2012, 134, 18928.
[19] Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org. Lett. 2008, 10, 4065.
[20] Ojida, A.; Sakamoto, T.; Inoue, M. J. Am. Chem. Soc. 2009, 131, 6543.
[21] Moriarty, R.; Martin, A.; Adamson, K. J. Microsc. 2014, 25, 204.
[22] Chen, J.; Zhang, H.; Guo, X. Anal. Bioanal. Chem. 2013, 405, 7447.
[23] Vegesna, G.; Sripathi, S.; Zhang, J.; Zhu, S.; He, W.; Luo, F.; Jahng, W.; Frost, M.; Liu, H. J. ACS Appl. Mater. Interfaces 2013, 5, 4107.
[24] Xiong, H.; Kos, P.; Yan, Y.; Zhou, K.; Miller, J.; Elkassih, S.; Siegwart, D. Bioconjugate Chem. 2016, 27, 1737.
[25] Zhu, S.; Zhang, J.; Janjanam, J. Anal. Chim. Acta 2013, 758, 138.
[26] Sui, B.; Tang, S.; Woodward, A. Eur. J. Org. Chem. 2016, 2851.
[27] Isik, M.; Ozdemir, T.; Turan, I. Org. Lett. 2013, 15, 216.
[28] Meltola, N.; Wahlroos, R.; Soini, A. J. Fluoresc. 2004, 14, 635.
[29] Kamkaew, A.; Fu, N.; Cai, W. ACS Med. Chem. Lett. 2017, 8, 179.
[30] Liu, S.; Li, D.; Zhang, Z. Chem. Commun. 2014, 50, 7371.
[31] Myochin, T.; Hanaoka, K.; Komatsu,T.; Terai, T.; Nagano, T. J. Am. Chem. Soc. 2012, 134, 13730.
[32] Worsfold, O.; Voelcker, N.; Nishiya, T. Langmuir 2006, 22, 7078.
[33] Namkung, W.; Padmawar, P.; Mills, A.; Verkman, S. J. Am. Chem. Soc. 2008, 130, 7794.
[34] Murtagh, J.; Frimannsson, D. O.; O'Shea, D. F. Org. Lett. 2009, 11, 5386.
[35] Cheng, T.; Xu, Y.; Zhang, S. J. Am. Chem. Soc. 2008, 130, 16160.
[36] Jiao, L.; Li, J.; Zhang, S. New J. Chem. 2009, 33, 1888.
[37] Dodani, S.; He, Q.; Chang, C. J. Am. Chem. Soc. 2009, 131, 18020.
[38] Lee, H.; Bae, D.; Park, J. Angew. Chem., Int. Ed. 2009, 48, 1239.
[39] Son, H.; Lee, H.; Lim, J. Chem. -Eur. J. 2010, 16, 11549.
[40] Lee, H.; Son, H.; Lim, J. Analyst 2010, 135, 2022.
[41] Yamada, Y.; Tomiyama, Y.; Morita, A. ChemBioChem 2008, 9, 853.
[42] Liu, Y.; Pei, Q.; Chen, L.; Li, Z.; Xie, Z. J. Mater. Chem. B 2016, 4, 2332.
[43] Vernekar, S.; Hallaq, H.; Clarkson, G. J. Med. Chem. 2010, 53, 2324.
[44] Lan, Y.; Xiao, K.; Wu, Y.; Chen, Q. Spectrochim. Acta, Part A 2017, 177, 28.
[45] Wang, C.; Song, X.; Chen, L.; Xiao, Y. Biosens. Bioelectron. 2017, 91, 313.
[46] Saha, S.; Agarwalla, H.; Gupta, H. Dalton Trans. 2013, 42, 15097.
[47] Wang, K.; Xiao, Y.; Wang, Y.; Feng, Y.; Chen, C.; Zhang, J.; Zhang, Q.; Meng, S.; Wang,Z.; Yang, H. Sci. Rep. 2016, 6, 23061.
[48] Pashow, K.; Rocca, J.; Xie, Z.; Tran, S.; Lin, W. J. Am. Chem. Soc. 2009, 131, 14261.
[49] Fan, G.; Lin, Y.; Yang, L. Chem. Commun. 2015, 51, 12447.
[50] Huang, L.; Li, Z.; Zhao, Y. J. Am. Chem. Soc. 2016, 138, 14586.
[51] He, H.; Zhang, J.; Xie, Y. Mol. Pharmaceutics 2016, 13, 4013.
[52] Sharker, S.; Kang, E.; Shin, C. J. Appl. Polym. Sci. 2016, 43791.
[53] Lv, H.; Zhang, X.; Wang, S. Analyst 2017, 142, 603.
[54] Shen, B. X.; Qian, Y. Chin. J. Org. Chem. 2016, 36, 774(in Chinese). (沈宝星, 钱鹰, 有机化学, 2016, 36, 774.)
[55] Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891.
[56] Cheng, T.; Wang, T.; Zhu, W. Org. Lett. 2011, 13, 3656.
[57] Cakmak, Y.; Kolemen, S.; Duman, S. Angew. Chem., Int. Ed. 2011, 50, 11937.
[58] Alamudi, S.; Satapathy, R.; Kim, J. Nat. Commun. 2016, 7, 11964.
/
〈 |
|
〉 |