Chinese Journal of Organic Chemistry >
[Bmim]ZnBr3-Promoted Tandem Reaction of Enaminoester and Allenic Ketones for the Synthesis of Substituted Nicotinate Derivatives
Received date: 2017-09-13
Revised date: 2017-10-17
Online published: 2017-10-31
Supported by
Project supported by the Natural Science Research Program from Education Department of Henan Province (No. 14A150048).
A novel approach for the synthesis of nicotinate derivatives has been developed by using Lewis acidic ionic liquid[Bmim]ZnBr3, which acts as dual solvent-catalyst in promoting the tandem reaction of enaminoester and allenic ketones. In the reaction process, no catalysts or other organic solvents are used, and[Bmim]ZnBr3 can be readily reused for three times without noticeable decrease in the catalytic activity after simple treatment. Furthermore, our method offers several advantages such as short reaction times, simple work-up procedure, environment-friendly solvent and good yields. The current methodology could also be conveniently applied to the synthesis of natural products and complex therapeutic agents occurring niacin frameworks.
Key words: ionic liquid; enaminoester; allenic ketone; nicotinate
Zhang Tao , Wang Qiang . [Bmim]ZnBr3-Promoted Tandem Reaction of Enaminoester and Allenic Ketones for the Synthesis of Substituted Nicotinate Derivatives[J]. Chinese Journal of Organic Chemistry, 2018 , 38(2) : 498 -503 . DOI: 10.6023/cjoc201709019
[1] (a) Sinthupoom, N.; Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Eur. Food. Res. Technol. 2015, 240, 1.
(b) Trabbic, C. J.; Zhang, F.; Walseth, T. F.; Slama, J. T. J. Med. Chem. 2015, 58, 3593.
(c) Ding, C. Curr. Opin. Invest. Drugs 2006, 7, 1020.
(d) Zhou, B.; Li, Z. -M.; Liu, C. -L.; Zhao, W. -G. Chin. J. Org. Chem. 2004, 24, 1304(in Chinese). (钟滨, 李正名, 刘长令, 赵卫光, 有机化学, 2004, 24, 1304.)
[2] (a) Hill, M. D. Chem. -Eur. J. 2010, 16, 12052.
(b) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.
(c) Bull, J. A.; Mousseau, J. J.; Pelletier, G.; Charette, A. B. Chem. Rev. 2012, 112, 2642.
[3] (a) Hantzsch, A. Chem. Ber. 1881, 14, 1637.
(b) Xia, J. -J.; Wang, G. -W. Synthesis 2005, 2379.
(c) Abdel-Mohsen, H. T.; Conrad, J.; Beifuss, U. Green Chem. 2012, 14, 2686.
(d) DePaolis, O.; Baffoe, J.; Landge, S.; Török, B. Synthesis 2008, 3423.
(e) Chang, L. -M.; Lai, J. -Y.; Yuan, G. -Q. Chin. J. Chem. 2016, 34, 887.
[4] (a) Bagley, M. C.; Dale, J. W.; Bower, J. Synlett 2001, 1149.
(b) Bagley, M. C.; Dale, J. W.; Bower, J. Chem. Commun. 2002, 1682.
(c) Bagley, M. C.; Glover, C.; Merritt, E. A. Synlett 2007, 2459.
[5] Chun, Y. -S.; Lee, J. -H.; Kim, J. -H.; Ko, Y. -O.; Lee, S. Org. Lett. 2011, 13, 6390.
[6] Al-Saleh, B.; Abdelkhalik, M. M.; Eltoukhy, A. M.; Elnagdi, M. H. J. Heterocycl. Chem. 2002, 39, 1035
[7] Muller, F.; Allais, C.; Constantieux, T.; Rodriguez, J. Chem. Commun. 2008, 4207.
[8] Allais, C.; Constantieux, T.; Rodriguez, J. Chem. -Eur. J. 2009, 15, 12945.
[9] Zhao, Y. -Y.; Wang, E. -B.; Wang, Y. -L. Chin. J. Org. Chem. 2017, 37, 866(in Chinese). (赵玉英, 王二兵, 王颖莉, 有机化学, 2017, 37, 866.)
[10] Stanforth, S. P.; Tarbitb, B.; Watsona, M. D. Tetrahedron 2004, 60, 8893.
[11] Chibiryaev, A. M.; Kimpe, N. D.; Tkachev, A. V. Tetrahedron Lett. 2000, 41, 8011.
[12] (a) Kumar, S.; Sawant, A. A.; Chikhale, R. P.; Karanjai, K.; Thomas, A. J. Org. Chem. 2016, 81, 1645.
(b) Kiss, L. E.; Ferreira, H. S.; Learmonth, D. A. Org. Lett. 2008, 10, 1835.
[13] (a) Cacchi, S.; Fabrizi, G.; Filisti, E. Org. Lett. 2008, 10, 2629.
(b) Tejedor, D.; Méndez-Abt, G.; García-Tellado, F. Eur. J. Org. Chem. 2010, 6582.
[14] (a) Li, L. -T.; Ma, S. -M. Chin. J. Org. Chem. 2000, 20, 850(in Chinese). (李林涛, 麻生明, 有机化学, 2000, 20, 850.)(b) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.
(c) Fan, X.; He, Y.; Zhang, X. Chem. Rec. 2016, 16, 1635.
(d) Yu, S.; Ma, S. Angew. Chem., Int. Ed. 2012, 51, 3074.
[15] Ma, S. -M.; Yin, S. -H.; Li, L. -T.; Tao, F. -G. Org. Lett. 2002, 4, 505.
[16] (a) Zhang, X.; Jia, X.; Fang, L.; Liu, N.; Wang, J.; Fan, X. Org. Lett. 2011, 13, 5024.
(b) He, Y.; Zhang, X.; Fan, X. Chem. Commun. 2014, 50, 14968.
(d) Zhang, X.; Song, Y.; Gao, L.; Guo, X.; Fan, X. Org. Biomol. Chem. 2014, 12, 2099.
(e) Fan, X.; Yan, M.; Wang, Y.; Zhang, X. J. Org. Chem. 2015, 80, 10536.
[17] Wang, Q.; Xu, Z.; Fan, X. -S. RSC Adv. 2013, 3, 4156.
[18] Wang, Q.; Yang, L.; Fan, X. -S. Synlett 2014, 25, 687.
[19] (a) Karthikeyan, G.; Perumal, P. T. J. Heterocycl. Chem. 2004, 41, 1039.
(b) Kamakshi, R.; Reddy, B. S. R. Aust. J. Chem. 2006, 59, 463.
[20] (a) Ramtohul, Y. K.; Chartrand, A. Org. Lett. 2007, 9, 1029.
(b) Zhao, M. -N.; Liang, H.; Ren, Z. -H.; Guan, Z. -H. Adv. Synth. Catal. 2013, 355, 221.
[21] (a) Sniady, A.; Morreale, M. S.; Dembinski, R. Org. Synth. 2007, 84, 199.
(b) Petasis, N. A.; Teets, K. A. J. Am. Chem. Soc. 1992, 114, 10328.
[22] Lecocq, V.; Graille, A.; Santini, C. C.; Baudouin, A.; Chauvin, Y.; Basset, J. M.; Arzel, L.; Bouchu, D.; Fenet, B. New J. Chem. 2005, 29, 700.
/
〈 |
|
〉 |