Articles

Synthesis of 3-Acyl and 2-Acyl Imidazo [1, 2-a]pyridines by I2-Mediated Diamination of α, β-Unsaturated Ketones with 2-Aminopyridines

  • Yu Wenquan ,
  • Song Lina ,
  • Tian Xianhai ,
  • Zhao Ting ,
  • Wang Manman ,
  • Wu Jie ,
  • Qiao Yan ,
  • Chang Junbiao
Expand
  • a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001;
    b School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001

Received date: 2017-12-31

  Revised date: 2018-01-11

  Online published: 2018-02-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 81330075) and the Outstanding Young Talent Research Fund of Zhengzhou University (No. 1521316004).

Abstract

Employing molecular iodine as the sole oxidant, a new and transition metal-free diamination reaction of α,β-unsaturated ketones with 2-aminopyridines has been developed. It can not only produce 3-acyl imidazo[1,2-a]pyridines but can also generate novel 2-acyl derivatives regioselectively by changing the solvent and substituents in the 2-aminopyridine substrates.

Cite this article

Yu Wenquan , Song Lina , Tian Xianhai , Zhao Ting , Wang Manman , Wu Jie , Qiao Yan , Chang Junbiao . Synthesis of 3-Acyl and 2-Acyl Imidazo [1, 2-a]pyridines by I2-Mediated Diamination of α, β-Unsaturated Ketones with 2-Aminopyridines[J]. Chinese Journal of Organic Chemistry, 2018 , 38(6) : 1530 -1537 . DOI: 10.6023/cjoc201712045

References

[1] (a) Zhu, Y.-P.; Fei, Z.; Liu, M.-C.; Jia, F.-C.; Wu, A.-X. Org. Lett. 2013, 15, 378.
(b) Zhu, Y.-P.; Liu, M.-C.; Cai, Q.; Jia, F.-C.; Wu, A.-X. Chem.-Eur. J. 2013, 19, 10132.
(c) Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Org. Lett. 2015, 17, 2960.
[2] (a) Huo, C.; Tang, J.; Xie, H.; Wang, Y.; Dong, J. Org. Lett. 2016, 18, 1016.
(b) Roslan, I. I.; Ng, K.-H.; Chuah, G.-K.; Jaenicke, S. Adv. Synth. Catal. 2016, 358, 364.
(c) Ma, L.; Wang, X.; Yu, W.; Han, B. Chem. Commun. 2011, 47, 11333.
(d) Wang, X.; Ma, L.; Yu, W. Synthesis 2011, 2445.
(e) Cao, H.; Liu, X.; Liao, J.; Huang, J.; Qiu, H.; Chen, Q.; Chen, Y. J. Org. Chem. 2014, 79, 11209.
(f) Zhan, H.; Zhao, L.; Liao, J.; Li, N.; Chen, Q.; Qiu, S.; Cao, H. Adv. Synth. Catal. 2015, 357, 46
[3] (a) Monir, K.; Bagdi, A. K.; Mishra, S.; Majee, A.; Hajra, A. Adv. Synth. Catal. 2014, 356, 1105.
(b) Mishra, S.; Monir, K.; Mitra, S.; Hajra, A. Org. Lett. 2014, 16, 6084.
[4] Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Q.; Yin, B.; Liu, P.; Li, J. Org. Lett. 2015, 17, 3872.
[5] (a) Nguyen, T. B.; Corbin, M.; Retailleau, P.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2015, 17, 4956.
(b) Nguyen, T. B.; Ermolenko, L.; Retailleau, P.; Al-Mourabit, A. Org. Lett. 2016, 18, 2177.
[6] (a) Couty, F.; Evano, G. In Comprehensive Heterocyclic Chemistry Ⅲ, Vol. 11, Eds.:Katritzky, A. R.; Ramsden, C. A.; Scriven, E. F. V.; Taylor, R. J. K., Elsevier, Oxford, 2008, pp. 409~499.
(b) Bagdi, A. K.; Santra, S.; Monir, K.; Hajra, A. Chem. Commun. 2015, 51, 1555.
(c) Dyminska, L. Bioorg. Med. Chem. 2015, 23, 6087.
(d) Enguehard-Gueiffier, C.; Gueiffier, A. Mini-Rev. Med. Chem. 2007, 7, 888.
[7] (a) Mizushige, K.; Ueda, T.; Yukiiri, K.; Suzuki, H. Cardiovasc. Drug Rev. 2002, 20, 163.
(b) Igawa, H.; Takahashi, M.; Kakegawa, K.; Kina, A.; Ikoma, M.; Aida, J.; Yasuma, T.; Kawata, Y.; Ashina, S.; Yamamoto, S.; Kundu, M.; Khamrai, U.; Hirabayashi, H.; Nakayama, M.; Nagisa, Y.; Kasai, S.; Maekawa, T. J. Med. Chem. 2016, 59, 1116.
(c) Trabanco, A. A.; Tresadern, G.; Macdonald, G. J.; Vega, J. A.; Lucas, A. I.; Matesanz, E.; Garcia, A.; Linares, M. L.; Diego, S. A. A.; Alonso, J. M.; Oehlrich, D.; Ahnaou, A.; Drinkenburg, W.; Mackie, C.; Andrés, J. I.; Lavreysen, H.; Cid, J. J. Med. Chem. 2012, 55, 2688.
(d) Gladysz, R.; Adriaenssens, Y.; Winter, H. D.; Joossens, J.; Lambeir, A.; Augustyns, K.; Veken, P. V. J. Med. Chem. 2015, 58, 9238.
[8] (a) Song, G.; Zhang, Y.; Li, X. Organometallics 2008, 27, 1936.
(b) John, A.; Shaikh, M. M.; Ghosh, P. Dalton Trans. 2009, 10581.
(c) Ke, C.-H.; Kuo, B.-C.; Nandi, D.; Lee, H. M. Organometallics 2013, 32, 4775.
[9] (a) Stasyuk, A. J.; Banasiewicz, M.; Cyranski, M. K.; Gryko, D. T. J. Org. Chem. 2012, 77, 5552.
(b) Mutai, T.; Sawatani, H.; Shida, T.; Shono, H.; Araki, K. J. Org. Chem. 2013, 78, 2482.
(c) Firmansyah, D.; Ciuciu, A. I.; Hugues, V.; Blanchard-Desce, M.; Flamigni, L.; Gryko, D. T. Chem.-Asian J. 2013, 8, 1279.
(d) Furukawa, S.; Shono, H.; Mutai, T.; Araki, K. ACS Appl. Mater. Interfaces 2014, 6, 16065.
(e) Nagarajan, N.; Velmurugan, G.; Prakash, A.; Shakti, N.; Katiyar, M.; Venuvanalingam, P.; Renganathan, R. Chem.-Asian J. 2014, 9, 294.
(f) Yao, C.; Xue, Z.; Lian, M.; Xu, X.; Zhao, J.; Zhou, G.; Wu, Y.; Yu, D.; Wong, W.-Y. J. Organomet. Chem. 2015, 784, 31.
[10] (a) Kang, S.; Kim, R. Y.; Seo, M. J.; Lee, S.; Kim, Y. M.; Seo, M.; Seo, J. J.; Ko, Y.; Choi, I.; Jang, J.; Nam, J.; Park, S.; Kang, H.; Kim, H. J.; Kim, J.; Ahn, S.; Pethe, K.; Nam, K.; No, Z.; Kim, J. J. Med. Chem. 2014, 57, 52935.
(b) Hirayama, T.; Okaniwa, M.; Banno, H.; Kakei, H.; Ohashi, A.; Iwai, K.; Ohori, M.; Mori, K.; Gotou, M.; Kawamoto, T.; Yokota, A.; Ishikawa, T. J. Med. Chem. 2015, 58, 8036.
(c) Moraski, G. C.; Miller, P. A.; Bailey, M. A.; Ollinger, J.; Parish, T.; Boshoff, H. I.; Cho, S.; Anderson, J. R.; Mulugeta, S.; Franzblau, S. G.; Miller, M. J. ACS Infect. Dis. 2015, 1, 85.
(d) Li, R.; Wang, H.; Li, Y.; Wang, Z.; Wang, X.; Wang, Y.; Ge, Z.; Li, R. Eur. J. Med. Chem. 2015, 93, 381.
(e) Jaramillo, C.; de Diego, J. E.; Hamdouchi, C.; Collins, E.; Keyser, H.; Sanchez-Martinez, C.; del Prado, M.; Norman, B.; Brooks, H. B.; Watkins, S. A.; Spencer, C. D.; Dempsey, J. A.; Anderson, B. D.; Campbell, R. M.; Leggett, T.; Patel, B.; Schultz, R. M.; Espinosa, J.; Vieth, M.; Zhang, F.; Timm, D. E. Bioorg. Med. Chem. Lett. 2004, 14, 6095.
(f) Sanfilippo, P. J.; Urbanski, M.; Press, J. B.; Dubinsky, B.; Moore, J. B. J. Med. Chem. 1988, 31, 2221.
[11] (a) Starrett, J. E. Montzka, T. A.; Crosswell, A. R.; Cavanagh, R. L. J. Med. Chem. 1989, 32, 2204.
(b) Anderson, M.; Beattie, J. F.; Breault, G. A.; Breed, J.; Byth, K. F.; Culshaw, J. D.; Ellston, R. P. A.; Green, S.; Minshull, C. A.; Norman, R. A.; Pauptit, R. A.; Stanway, J.; Thomas, A. P.; Jewsbury, P. J. Bioorg. Med. Chem. Lett. 2003, 13, 3021.
[12] Podergajs, S.; Stanovnik, B.; Tisler, M. Synthesis 1984, 263.
[13] For representative examples, see:(a) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678.
(b) Mohan, D. C.; Rao, S. N.; Adimurthy, S. J. Org. Chem. 2013, 78, 1266.
(c) Reddy, K. R.; Reddy, A. S.; Shankar, R.; Kant, R.; Das, P. Asian J. Org. Chem. 2015, 4, 573.
(d) Kaswan, P.; Pericherla, K.; Saini, H. K.; Kumar, A. RSC Adv. 2015, 5, 3670.
(e) Kaswan, P.; Pericherla, K.; Rajnikant; Kumar, A. Tetrahedron 2014, 70, 8539.
(f) Xing, M.-M.; Xin, M.; Shen, C.; Gao, J.-R.; Jia, J.-H.; Li, Y.-J. Tetrahedron 2016, 72, 4201.
(g) Meng, X.; Zhang, J.; Chen, B.; Jing, Z.; Zhao, P. Catal. Sci. Technol. 2016, 6, 890.
(h) Yan, R.-L.; Yan, H.; Ma, C.; Ren, Z.-Y.; Gao, X.-A.; Huang, G.-S.; Liang, Y.-M. J. Org. Chem. 2012, 77, 2024.
[14] (a) Tian, X.; Song, L. Wang, Manman.; Lv, Z.; Wu, J.; Yu, W.; Chang, J. Chem.-Eur. J. 2016, 22, 7617.
(b) Liu, J.; Wei, W.; Zhao, T.; Liu, X.; Wu, J.; Yu, W.; Chang, J. J. Org. Chem. 2016, 81, 9326.
[15] Li, J.; Zhu, Y.; Li, C.; Liu, P.; Wang, Y. CN 105801575, 2016[Chem. Abstr. 2016, 165, 274501.]
[16] CCDC 1539194(3a) and 1539195(4s) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
[17] (a) King, L. C. J. Am. Chem. Soc. 1944, 66, 894.
(b) Pearson, R. G. J. Am. Chem. Soc. 1947, 69, 3100.

Outlines

/