Chinese Journal of Organic Chemistry >
Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization
Received date: 2018-04-02
Revised date: 2018-04-23
Online published: 2018-05-03
Supported by
Project supported by the National Natural Science Foundation of China (No. 21772211) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014229).
Primary anilines are widely used in pharmaceutical, agrochemicals and material chemistry. In recent years, the green and efficient methods for constructing carbon-nitrogen (C-N) bonds to introduce primary amines has been one of the hottest topics in chemical synthesis. The direct C-H primary amination of aromatic compounds have received considerable attention due to its high efficiency and practicality. The recent progress in the C-H primary amination of aromatic compounds reactions is reviewed. Furthermore, the synthetic challenge and prospect in the future development for the synthesis of primary anilines through direct C-H amination are summarized.
Xu Linlin , Xu Hui , Lin Haixia , Dai Huixiong . Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization[J]. Chinese Journal of Organic Chemistry, 2018 , 38(8) : 1940 -1948 . DOI: 10.6023/cjoc201804004
[1] (a) Ricci, A. Amino Group Chemistry:From Synthesis to the Life Sciences, Wiley-VCH, Weinheim, 2008.
(b) Evano, G.; Theunissen, C.; Pradal, A. Nat. Prod. Rep. 2013, 30, 1467.
(c) Okano, K.; Tokuyama, H.; Fukuyama, T. Chem. Commun. 2014, 50, 13650.
(d) Quintas-Cardama, A.; Kantarjian, H.; Cortes, J. Nat. Rev. Drug Discovery 2007, 6, 834.
(e) Uno, S.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.; Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita, S.; Urano, Y. Nat. Chem. 2014, 6, 681.
(f) Uno, S.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.; Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita, S.; Urano, Y. Nat. Chem. 2014, 6, 681.
[2] (a) Lawrence, S. A. Amines:Synthesis Properties and Applica-tions, Cambridge University Press, Cambridge, 2004.
(b) Rappoport, Z. The Chemistry of Anilines, Parts 1 and 2, John Wiley & Sons, New York, 2007.
(c) Aniszewski, T. Alkaloids. Secrets of Life, Elsevier Science, Amsterdam, 2007.
[3] (a) Sandmeyer, T.; Ber. Dtsch. Chem. Ges. 1884, 17, 1633.
(b) Hodgson, H. H. Chem. Rev. 1947, 40, 251.
(c) Mo, F.; Jiang, Y.; Qiu, D.; Zhang, Y.; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1846.
(d) Dai, J.; Fang, C.; Xiao, B.; Yi, J.; Xu, J.; Liu, Z.; Lu, X.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
(e) Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Org. Biomol. Chem. 2013, 11, 1582.
[4] Porter, R. J.; Nohria, V.; Rundfeldt, C. Neurotherapeutics 2007, 4, 149.
[5] Weijlard, J.; Orahoyats, P. D.; Jr, A. P. S.; Purdue, G.; Heath, F. K.; Pfister, K. J. Am. Chem. Soc. 1956, 78, 2342.
[6] Yang, L. P.; Mccormack, P. L. Drugs 2011, 71, 221.
[7] Bartlett, J. B.; Dredge, K.; Dalgleish, A. G. Nat. Rev. Cancer 2004. 4, 314.
[8] (a) Trost, B. Science (Washington, D. C.) 1991, 254, 1471.
(b) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
(c) Young, I. S.; Baran, P. S. Nat. Chem. 2009, 1, 193.
(d) Afagh, N. A.; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
(e) Zhu, L.; Guo, B.; Tang, D.; Hu, X.; Li, G. Hu, C. J. Catal. 2007, 245, 446.
(g) Singha, S.; Parida, K. M. Catal. Sci. Technol. 2011, 1, 1496.
(h) Parida, K. M.; Rath, D.; Dash, S. S. J. Mol. Catal. A:Chem. 2010, 318, 85.
[9] Smith, M. B.; March, J. March's Advanced Organic Chemistry:Reactions, Mechanisms and Structure, 6th ed., John Wiley & Sons, Hoboken, 2007.
[10] (a) Ullmann, F. Ber. 1903, 36, 2382.
(b) Goldberg, I. Ber. 1906, 39, 1691.
[11] (a) Kosugi, M.; Kameyama, M.; Migita, T. Chem. Lett. 1983, 927.
(b) Guram, A. S.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
(c) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.
[12] (a) Chan, D.; Monaco, K.; Wang, R.; Winter, M. Tetrahedron Lett. 1998, 39, 2933.
(b) Evans, D.; Katz, J.; West, T. Tetrahedron Lett. 1998, 39, 2937.
(c) Lam, P.; Clark, C.; Saubern, S.; Adams, J.; Winters, M.; Chan, D.; Combs, A. Tetrahedron Lett. 1998, 39, 2941.
[13] (a) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 121, 5196.
(b) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(c) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147
[14] (a) Davies, H. M. L.; Long, M. S. Angew. Chem., Int. Ed. 2005, 44, 3518.
(b) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
(c) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
(d) Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
(e) Hamada, T.; Ye, X.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
(f) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2860.
(g) Li, G.; Jia, C.; Sun, K. Org. Lett. 2013, 15, 5198.
(h) Shang, M.; Sun, S.-Z.; Zeng, S.-H.; Dai, H.-X.; Yu, J.-Q. Org. Lett. 2013, 15, 5286.
(i) Brasche, G.; Buchwald, S. L.; Angew. Chem., Int. Ed. 2008, 47, 1932.
(j) Roane, J.; Daugulis, O. J. Am. Chem. Soc. 2016, 138, 4601.
(h)Wang, F.; Jin, L.; Kong, L.-H.; Li, X.-W. Org. Lett. 2017, 19, 1812.
[15] (a) Amaoka, Y.; Kamijo, S.; Hoshikawa, T.; Inoue, M. J. Org. Chem. 2012, 77, 9959.
(b) Foo, K.; Sella, E.; Thome, I.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.
(c) Zhou, L.; Tang, S.; Qi, X.; Lin, C.; Liu, K.; Lan Y.; Lei, A. Org. Lett. 2014, 16, 3404.
(d) Allen, L. J.; Cabrera, P. J.; Cabrera, M. Lee; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.
(e) Hwang, Y.; Park, Y.; Chang, S. Chem.-Eur. J. 2017, 23, 11147.
(f) Hong, S. Y.; Park, Y.; Hwang, Y.; Kim, Y. B.; Baik, M. H.; Chang, S. Science 2018, 359, 1016.
[16] (a) Shen, C.; Zhang, P.; Sun, Q. Chem. Soc. Rev. 2015, 44, 291.
(b) Wang, M.; Wang, Z.-X.; Shang, M.; Dai, H.-X. Chin. J. Org. Chem. 2015, 35, 570(in Chinese). (王明明, 王子潇, 商明, 戴辉雄, 有机化学, 2015, 35, 570.)
(c) Wang, L.; Li, Z.; Wan, K.; Qu, X.; Hu, S.-Q.; Wang, F. Chin. J. Org. Chem. 2016, 36, 889(in Chinese). (王亮, 李站, 万康, 瞿星, 胡思前, 王锋, 有机化学, 2016, 36, 889.)
(d) Yu, J.-Q.; Ding, K.-L. Acta Chim. Sinica 2015, 73, 1223(in Chinese). (余金权, 丁奎岭, 化学学报, 2015, 73, 1223.)
(e) Shen, C.; Zhang, P.; Sun, Q. Chem. Soc. Rev. 2015, 44, 291.
(f) Huang, F.-S.; Chen, X.; Xie, Y.; Zeng, W. Chin. J. Org. Chem. 2017, 37, 31(in Chinese). (黄房生, 陈训, 谢应, 曾伟, 有机化学, 2017, 37, 31.)
[17] Graebe, C. Ber. 1901, 34, 1778.
[18] Jaubert, G. E'. Comp. Rend. 1901, 132, 841.
[19] Kovacic, P.; Bennett, R. P. J. Am. Chem. Soc. 1961, 83, 221.
[20] Yuzawa, H.; Yoshida, H. Chem. Commun. 2010, 46, 8854.
[21] (a) Yu, T.; Yang, R.; Xia, S.; Li, G.; Hu, C. Catal. Sci. Technol. 2014, 4, 3159.
(b) Yu, T.; Zhang, Q.; Xia, S.; Li, G.; Hu, C. Catal. Sci. Technol. 2014, 4, 639.
[22] Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science (Washington, D. C.) 2016, 353, 1144.
[23] Legnani, L.; Prina Cerai, G.; Morandi, B. ACS Catal. 2016, 6, 8162.
[24] Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K; Lei, A. Chem. Rev. 2017, 117, 9016.
[25] Citterio, A.; Gentile, A.; Minisci, F.; Navarrini, V.; Serravalle, M.; Ventura, S. J. Org. Chem. 1984, 49, 4479.
[26] Morofuji, T.; Shimizu, A.; Yoshida, J.-I. J. Am. Chem. Soc. 2013, 135, 5000.
[27] Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Chem.-Eur. J. 2015, 21, 3211.
[28] Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273.
[29] Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science (Washington, D. C.) 2015, 349, 1326.
[30] Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.
[31] Liu, J.-Z.; Wu, K.; Shen, T.; Liang, Y.-J.; Zou, M.-C.; Zhu, Y.-C.; Li, X. W.; Li, X.-Y.; Jiao, N. Chem.-Eur. J. 2017, 23, 563.
[32] (a) Kakiuchi, F.; Sekine, S.; Kamatani, A.; Sonoda, M.; Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62.
(b) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(c) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624.
(d) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
(g) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.
[33] (a) Liu, J.-D.; Chen, G.-S; Tan Z. Adv. Synth. Catal. 2016, 358, 1174.
(b) Jiao, J.; Murakami, K.; Itami, K. ACS Catal. 2016, 6, 610.
(c) Park, Y.; Kim, Y.; Chang, S. Chem. Rev. 2017, 117, 9247.
[34] (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
(b) Rao, W.-H.; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
(c) Shang, M.; Sun, S.-Z.; Wang, M.-M.; Dai, H.-X. Synthesis 2016, 48, 4381.
[35] Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Org. Chem. Front. 2014, 1, 777.
[36] Yu, L.; Chen, X.; L, D; Tan, Z.; Gui, Q.-W. Adv. Synth. Catal. 2018, 360, 1346.
[37] Yu, S.-J.; Wan, B.-S.; Li, X.-W. Org. Lett. 2013, 15, 3706.
[38] Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172
[39] Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.
[40] Tezuka, N.; Shimojo, K.; Komagawa, S.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M. J. Am. Chem. Soc. 2016, 138, 9166.
/
〈 |
|
〉 |