Chinese Journal of Organic Chemistry >
Catalytic Pyrolysis of Lignin for Directional Production of p-Xylene over Metal Oxides-Modified HZSM-5 Catalysts
Received date: 2018-03-25
Revised date: 2018-05-08
Online published: 2018-05-24
Supported by
Project supported by the National Key Basic Program of China (973 Program, No. 2013CB228105), the Program for Changjiang Scholars and Innovative Research Team in University and the Fundamental Research Funds for the Central Universities (No. 2060190040).
Para-xylene (p-xylene) is an important bulk chemical in petrochemical industry, and the production of biomass-based p-xylene is of great significance in both academic and industrial arenas. This work proves the one step process for the production of p-xylene through the catalytic pyrolysis of lignin into the aromatic monomers, together with the alkylation of light aromatics and the isomerization of xylenes isomers into p-xylene over metal oxides-modified HZSM-5 catalysts. The modified catalysts by adding the La, Mg, Ce, and Zn elements into HZSM-5 promoted the alkylation of light aromatics (like benzene and toluene) into xylenes, and the isomerization of m-/o-xylenes to p-xylene, due to the modulations of the acid strength and the strong acid sites. Co-catalytic pyrolysis of lignin and methanol significantly enhanced the production of p-xylene during the catalytic pyrolysis of lignin. The highest p-xylene yield of 13.9% with a p-xylene/xylenes ratio of 82.7% was obtained by the co-catalytic pyrolysis of lignin with 33 wt% methanol over the 20% La2O3/HZSM-5 catalyst. The reaction pathway for the formation of p-xylene from lignin was addressed based on the identified products and the characterization of catalysts.
Key words: lignin; p-xylene; catalytic pyrolysis; alkylation; isomerization
Jia Qifang , Zhu Lijuan , Fan Minghui , Li Quanxin . Catalytic Pyrolysis of Lignin for Directional Production of p-Xylene over Metal Oxides-Modified HZSM-5 Catalysts[J]. Chinese Journal of Organic Chemistry, 2018 , 38(8) : 2101 -2108 . DOI: 10.6023/cjoc201803039
[1] Lyons, T. W.; Guironnet, D.; Findlater, M.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 15708.
[2] Hu, H.; Lyu, J.; Cen, J.; Zhang, Q.; Wang, Q.; Han, W.; Rui, J.; Li, X. RSC Adv. 2015, 5, 2647.
[3] Mitra, B.; Kunzru, D. Catal. Lett. 2011, 141, 1569.
[4] Li, L. L.; Nie, X. W.; Song, C. S.; Guo, X. W. Acta Phys.-Chim. Sin. 2013, 29, 754.
[5] Azadi, P.; Inderwildi, O. R.; Farnood, R.; King, D. A. Renewable Sustainable Energy Rev. 2013, 21, 506.
[6] Li, C.; Zhao, X.; Wang, A.; Huber, G. W.; Zhang, T. Chem. Rev. 2015, 115, 11559.
[7] Patwardhan, P. R.; Brown, R. C.; Shanks, B. H. ChemSusChem 2011, 4, 1629.
[8] Shen, D.; Zhao, J.; Xiao, R.; Gu, S. J. Anal. Appl. Pyrolysis 2015, 111, 47.
[9] Fan, L.; Zhang, Y.; Liu, S.; Zhou, N.; Chen, P.; Cheng, Y.; Addy, M.; Lu, Q.; Omar, M. M.; Liu, Y.; Wang, Y.; Dai, L.; Anderson, E.; Peng, P.; Lei, H.; Ruan, R. Bioresour. Technol. 2017, 241, 1118.
[10] Gómez, N.; Banks, S. W.; Nowakowski, D. J.; Rosas, J. G.; Cara, J.; Sánchez, M. E.; Bridgwater, A. V. Fuel Process. Technol. 2018, 172, 97
[11] Jackson, M. A.; Compton, D. L.; Boateng, A. A. J. Anal. Appl. Pyrolysis 2009, 85, 226.
[12] Ma, Z.; Troussard, E.; Van Bokhoven, J. A. Appl. Catal. A:Gen. 2012, 423~424, 130.
[13] Li, X.; Su, L.; Wang, Y.; Yu, Y.; Wang, C.; Li, X.; Wang, Z. Front. Environ. Sci. Eng. China 2012, 6, 295.
[14] Wang, K.; Kim, K. H.; Brown, R. C. Green Chem. 2014, 16, 727-735.
[15] Mullen, C. A.; Boateng, A. A. ACS Sustainable Chem. Eng. 2015, 3, 1623.
[16] Karnjanakom, S.; Bayu, A.; Hao, X.; Kongparakul, S.; Samart, C.; Abudula, A.; Guan, G. J. Mol. Catal. A:Chem. 2016, 421, 235.
[17] Zheng, Y.; Wang, F.; Yang, X.; Huang, Y.; Liu, C.; Zheng, Z.; Gu, J. J. Anal. Appl. Pyrolysis 2017, 126, 169.
[18] Lu, Q.; Zhou, M.; Li, W.; Wang, X.; Cui, M.; Yang, Y. Catal. Today 2018, 302, 169.
[19] Zhang, H.; Carlson, T. R.; Xiao, R.; Huber, G. W. Green Chem. 2012, 14, 98.
[20] Li, J.; Yu, Y.; Li, X.; Wang, W.; Yu, G.; Deng, S.; Huang, J.; Wang, B.; Wang, Y. Appl. Catal. B:Environ. 2015, 172~173, 154.
[21] Maneffa, A.; Priecel, P.; Lopez-Sanchez, J. A. ChemSusChem 2016, 9, 2736.
[22] Lin, Z.; Nikolakis, V.; Ierapetritou, M. Ind. Eng. Chem. Res. 2014, 53, 10688.
[23] Cheng, Y. T.; Wang, Z.; Gilbert, C. J.; Fan, W.; Huber, G. W. Angew. Chem., Int. Ed. 2012, 51, 11097.
[24] Liu, G.; Zhao, Y.; Guo, J. Catalysts 2016, 6, 19.
[25] Jin, F; Fan, M. H.; Jia, Q. F.; Li, Q. X. Chin. J. Chem. Phys. 2017, 30, 348.
[26] Xue, H.; Liu, J.; Xia, T.; Li, Q. Chin. J. Chem. Phys. 2016, 29, 481.
[27] Zhang, Y. H.; Fan, M. H.,; Chang, R.; Li, Q. X. Chin. J. Chem. Phys. 2017, 30, 588.
[28] Wu, X. P.; Fan, M. H.; Li, Q. X. Chin. J. Chem. Phys. 2017, 30, 479.
[29] Jiang, P. W.; Wu, X. P.; Liu, J. X.; Li, Q. X. Chin. J. Chem. Phys. 2016, 29, 635.
[30] Gayubo, A. G.; Valle, B.; Aguayo, A. T.; Olazar, M.; Bilbao, J. Energy Fuels 2009, 23, 4129.
/
〈 |
|
〉 |