Articles

Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery

  • Zhang Wei ,
  • Yao Zijian ,
  • Deng Wei
Expand
  • a School of Materials Science and Engineering, Shanghai University, Shanghai 200444;
    b School of Chemical and Engineering, Shanghai Institute of Technology, Shanghai 201418

Received date: 2018-03-05

  Revised date: 2018-05-30

  Online published: 2018-06-15

Supported by

Project supported by the Key Subject of Shanghai Municipal Education Commission (No. J50704) and the Natural Science Foundation of Shanghai City (No. 16ZR1435700).

Abstract

Poly (amido amine)s with diverse topographical structures are promising candidates for gene delivery and drug carriers. A series of poly (amido amine)s (PAAs) with the same repeating units, however, different degree of branching, were successfully prepared by Michael addition polycondensation of N,N-methylenebis (acrylamide) (MBA) and L-cysteine methyl ester hydrochloride (CYS) in a water/dimethyl sulfoxide co-solvent. The obtained disposed cationic PAAs exhibit good DNA condensation capacities.

Cite this article

Zhang Wei , Yao Zijian , Deng Wei . Poly (amido amine)s with Different Branched Architecture: Synthesis, Reactivity and Their Application in Gene Delivery[J]. Chinese Journal of Organic Chemistry, 2018 , 38(10) : 2713 -2719 . DOI: 10.6023/cjoc201803006

References

[1] Ranucci, E.; Suardi, M. A.; Annunziata, R.; Ferruti, P.; Chiellini, F.; Bartoli, C. Biomacromolecules 2008, 9, 2693.
[2] Wang, X.; He, Y.-J.; Wu, J.-Y.; Gao, C.; Xu, Y.-H. Biomacromolecules 2010, 11, 245.
[3] Jones, C. H.; Chen, C.-K.; Jiang, M.; Fang, L.; Cheng, C.; Pfeifer, B. A. Mol. Pharmaceutics 2013, 10, 1138.
[4] Jones, C. H.; Chen, C.-K.; Ravikrishnan, A.; Rane, S.; Pfeifer, B. A. Mol. Pharmaceutics 2013, 10, 4082.
[5] Zhang, X.-Q.; Chen, M.; Lam, R.; Xu, X.-Y.; Osawa, E.; Ho, D. ACS Nano 2010, 3, 2609.
[6] Kievit, F. M.; Veiseh, O.; Fang, C.; Bhattarai, N.; Lee, D.; Ellenbogen, R. G.; Zhang, M. Q. ACS Nano 2010, 4, 4587.
[7] Cai, X.; Jin, R.; Wang, J.; Yue, D.; Jiang, Q.; Wu, Y.; Gu, Z. ACS Appl. Mater. Interfaces 2016, 11, 5821.
[8] Kong, L.; Alves, C. S.; Hou, W.; Qiu, J.; Mohwald, H.; Tomas, H.; Shi, X. ACS Appl. Mater. Interfaces 2015, 7, 4833.
[9] Li, T.; Wu, L.; Zhang, J.; Xi, G.; Pang, Y.; Wang, X.; Chen, T. ACS Appl. Mater. Interfaces 2016, 8, 31311.
[10] Lim, D. G.; Rajasekaran, N.; Lee, D.; Kim, N. A.; Jung, H. S.; Hong, S.; Shin, Y. K.; Kang, E.; Jeong, S. H. ACS Appl. Mater. Interfaces 2017, 9, 31543.
[11] Liu, J.; Xu, L.; Jin, Y.; Qi, C.; Li, Q.; Zhang, Y.; Jiang, X.; Wang, G.; Wang, Z.; Wang, L. ACS Appl. Mater. Interfaces 2016, 8, 14200.
[12] Zhang, C.; Zhang, T.; Jin, S.; Xue, X.; Yang, X.; Gong, N.; Zhang, J.; Wang, P.-C.; Tian, J.-H.; Xing, J.; Liang, X.-J. ACS Appl. Mater. Interfaces 2017, 9, 4425.
[13] Guan, X.; Guo, Z.; Lin, L.; Chen, J.; Tian, H.; Chen, X. Nano Lett. 2016, 16, 6823.
[14] Tsai, Y. J.; Hu, C.-C.; Chu, C.-C.; Toyoko, I. Biomacromolecules 2011, 12, 4283.
[15] Grayson, S. M.; Frechet, J. M. J. Chem. Rev. 2001, 101, 3819.
[16] Cheng, C.-X.; Jiao, T.-F.; Tang, R.-P.; Chen, E.-Q.; Liu, M.-H.; Xi, F. Macromolecules 2006, 29, 6327.
[17] Percec, V.; Dulcey, A. E.; Peterca, M.; Ilies, M.; Sienkowska, M. J.; Heiney, P. A. J. Am. Chem. Soc. 2005, 127, 17902.
[18] Jin, H.-B.; Zheng, Y.-L.; Liu, Y.; Cheng, H.-X.; Zhou Y.-F.; Yan, D.-Y. Angew. Chem., Int. Ed. 2011, 50, 10352.
[19] Al-Jamal, K. T.; Al-Jamal, W. T.; Wang, T. W. J.; Rubio, N.; Buddle, J.; Gathercole, D.; Zloh, M.; Kostarelos, K. ACS Nano 2013, 7, 1905.
[20] Ping, Y.; Wu, D.-C.; Kumar, J. N.; Cheng, W.-R.; Lay, C. L.; Liu, Y. Biomacromolecules 2013, 14, 2083.
[21] Huang, H.; Cao, D.-W.; Qin, L.-H.; Tian, S.-Q.; Liang, Y.; Pan S.-R.; Feng, M. Mol. Pharmaceutics 2014, 11, 2323.
[22] Dohnal, V.; Maly, J.; Havlickova, M.; Semeradtova, A.; Herman, D.; Kuca, K. J. Chromatogr. Sci. 2014, 52, 321.
[23] Hasanzadeh, M.; Shadjou, N.; Eskandani, M.; Soleymani, J.; Jafari, F.; DelaGuardia, M. TrAC-Trends Anal. Chem. 2014, 53, 137.
[24] Yang, J.-P.; Zhang, Q.; Chang, H.; Cheng, Y.-Y. Chem. Rev. 2015, 115, 5274.
[25] Bhattacharya, P.; Nasybulin, E. N.; Engelhard, M. H.; Kovarik, L.; Bowden, M. E.; Li, X.-S.; Gaspar, D. J.; Xu, W.; Zhang, J.-G. Adv. Funct. Mater. 2014, 24, 7510.
[26] Li, H. M.; Sun, X.; Zhao, D.; Zhang, Z.-R. Mol. Pharmaceutics 2012, 9, 2974.
[27] Tabassi, A. S. S.; Tekie, F. S. M.; Hadizadeh, F.; Rashid, R.; Khodaverdi, E.; Mohajeri, S. A. J. Sol.-Gel. Sci. Technol. 2014, 69, 166.
[28] Shah, S.; Solanki, A.; Sasmal, P. K.; Lee, K. B. J. Am. Chem. Soc. 2013, 135, 15682.
[29] Su, C.-J.; Chen, H.-L.; Wei, M.-C.; Peng, S.-F.; Sung, H.-W.; Ivanov, V. A. Biomacromolecules 2009, 10, 773.
[30] Zhou, Z.-X.; Ma, X.-P.; Jin, E.; Tang, J.-B.; Sui, M.-H.; Shen, Y.-Q.; Van Kirk, E. A.; Murdoch, W. J.; Radosz, M. Biomaterials 2013, 34, 5722.
[31] Bekhradnia, S.; Zhu, K.; Knudsen, K. D.; Sande, S. A.; Nyström, B. J. Mater. Sci. 2014, 49, 6102.
[32] Higa, O. Z.; Faria, H. A. M.; De Queiroz, A. A. A. Radiat. Phys. Chem. 2014, 98, 118.
[33] Pan, J.-J.; Yuan, Y.-Q.; Wang, H.-W.; Liu, F.; Xiong, X.-H.; Chen, H.; Yuan, L. ACS Appl. Mater. Interfaces 2016, 8, 15138.
[34] Coue, G.; Freese, C.; Unger, R. E.; Kirkpatrick, C. J.; Engbersen, J. F. J. Acta Biomater. 2013, 9, 6062.
[35] Martello, F.; Piest, M.; Engbersen, J. F. J.; Ferruti, P. J. Controlled Release 2012, 164, 372.
[36] Wang, R.-B.; Zhou, L.-Z.; Zhou, Y.-F.; Li, G.-L.; Zhu, X.-Y.; Gu, H.-C.; Jiang, X.-L.; Li, H.-Q.; Wu, J.-L.; He, L.; Guo, X.-Q.; Zhu, B.-S.; Yan, D.-Y. Biomacromolecules 2010, 11, 489.
[37] Liu, J.-Y.; Huang, W.; Pan, Y.; Huang, P.; Zhu, X.-Y.; Zhou, Y.-F.; Yan, D.-Y. Angew. Chem., Int. Ed. 2011, 50, 9162.
[38] Liu, Y.; Yu, C.-Y.; Jin, H.-B.; Jiang, B.-B.; Zhu, X.-Y.; Zhou, Y. -F.; Lu Z.-Y.; Yan, D.-Y. J. Am. Chem. Soc. 2013, 135, 4765.
[39] Tao, W.; Liu, Y.; Jiang, B.-B.; Yu, S.-R.; Huang, W.; Zhou, Y.-F.; Yan, D.-Y. J. Am. Chem. Soc. 2012, 134, 762.
[40] Santhakumaran, L. M.; Thomas, T.; Thomas, T. J. Nucleic Acids Res. 2004, 32, 2102.
[41] Sylvestre, J. P.; Kabashin, A. V.; Sacher, E.; Meunier, M.; Luong, J. H. T. J. Am. Chem. Soc. 2004, 126, 7176.
[42] Chen, L.; Zhu, X.-Y.; Yan, D.-Y.; Chen, Y.; Chen, Q.; Yao, Y.-F. Angew. Chem., Int. Ed. 2006, 118, 93.
[43] Hsieh, S. J.; Wang, C.-C.; Chen, C.-Y. Macromolecules 2009, 42, 4787.
[44] Zhang, Q.; Wang, N.; Zhao, L.-B.; Xu, T.-W.; Cheng, Y.-Y. ACS Appl. Mater. Interfaces 2013, 5, 1907.
[45] Wang, N.; Dong, A.; Tang, H.; Kirk, E. A. V.; Johnson, P. A.; Murdoch, W. J.; Radosz, M.; Shen, Y. Macromol. Biosci. 2007, 7, 1187.
[46] Zhou, Y.-F.; Huang, W.-J.; Liu, Y.; Zhu, X.-Y.; Yan, D.-Y. Adv. Mater. 2010, 22, 4567.
[47] Wang, D.-L.; Zhao, T.-Y.; Zhu, X.-Y.; Yan, D.-Y.; Wang, W.-X. Chem. Soc. Rev. 2015, 44, 4023.

Outlines

/