Articles

Recent Advances in the Synthesis of Heterocyclic Compounds via Pd-Catalyzed C(sp3)-H Bond Activation

  • Zhao Kang ,
  • Yang Lei ,
  • Liu Jianhua ,
  • Xia Chungu
Expand
  • a State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;
    b University of Chinise Academy of Science, Beijing 100049

Received date: 2018-05-13

  Revised date: 2018-06-26

  Online published: 2018-07-24

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21372231, 21673260).

Abstract

Heterocyclic compounds are not only important intermediates in organic synthesis and medicine synthesis, but also the basic building framework of biologically active natural products. In recent years, Pd-catalyzed C(sp3)-H bonds activation has been demonstrated as one of the hot topics in the field of heterocyclic compound synthesis because of its high atomic economic characteristics. Herein, the recent research progress in the construction of heterocyclic compounds via Pd-catalyzed C(sp3)-H bond activation is summarized according to the classification of the ring number of heterocyclic compounds (mainly including N, O heterocycles). The reaction selectivity, substrate compatibility, reaction mechanism, advantages and disadvantages as well as an outlook in this field are also discussed.

Cite this article

Zhao Kang , Yang Lei , Liu Jianhua , Xia Chungu . Recent Advances in the Synthesis of Heterocyclic Compounds via Pd-Catalyzed C(sp3)-H Bond Activation[J]. Chinese Journal of Organic Chemistry, 2018 , 38(11) : 2833 -2857 . DOI: 10.6023/cjoc201805028

References

[1] (a) Brady, P. B.; Bhat, V. Eur. J. Org. Chem. 2017, 5179.
(b) Shaikh, T. M.; Hong, F.-E. J. Organomet. Chem. 2016, 801, 139.
(c) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885.
(d) Pei, P.; Zhang, F.; Yi, H.; Lei, A. Acta Chim. Sinica 2017, 75, 15(in Chinese). (裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.)
[2] (a) Zeni, G.; Larock, R. C. Chem. Rev. 2004, 104, 2285.
(b) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
[3] Murahashi, S. J. Am. Chem. Soc. 1955, 77, 6403.
[4] (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257.
(b) Rueping, M.; Dufour, J.; Schoepke, F. R. Green Chem. 2011, 13, 1084.
[5] (a) Luo, P.; Tang, R.; Zhong, P.; Li, J. Chin. J. Org. Chem. 2009, 29, 1924(in Chinese). (罗培松, 汤日元, 钟平, 李金恒, 有机化学, 2009, 29, 1924.)
(b) Martins, M. A.; Frizzo, C. P.; Moreira, D. N.; Zanatta, N.; Bonacorso, H. G. Chem. Rev. 2008, 108, 2015.
(c) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 13819.
[6] (a) Yang, Y.; Lan, J.; You, J. Chem. Rev. 2017, 117, 8787.
(b) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147.
[7] (a) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140.
(b) Fumagalli, G.; Stanton, S.; Bower, J. F. Chem. Rev. 2017, 117, 9404.
[8] He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J.-Q. Chem. Rev. 2017, 117, 8754
[9] Baudoin, O. Acc. Chem. Res. 2017, 50, 1114.
[10] (a) Xu, J.; Wei, Z.; Li, J. Chin. J. Org. Chem. 2012, 32, 1208(in Chinese). (徐娟, 魏真, 李加荣, 有机化学, 2012, 32, 1208.)
(b) Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813(in Chinese). (朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813.)
(c) Huang, J.; Gu, Q.; You, S. Chin. J. Org. Chem. 2018, 38, 51(in Chinese). (黄家翩, 顾庆, 游书力, 有机化学, 2018, 38, 51.)
(d) Wang, S.; Yan, F.; Wang, L.; Zhu, L. Chin. J. Org. Chem. 2018, 38, 291(in Chinese). (汪珊, 严沣, 汪连生, 朱磊, 有机化学, 2018, 38, 291.)
[11] McNally, A.; Haffemayer, B.; Collins, B. S.; Gaunt, M. J. Nature 2014, 510, 129.
[12] Smalley, A. P.; Gaunt, M. J. J. Am. Chem. Soc. 2015, 137, 10632.
[13] Zakrzewski, J.; Smalley, A. P.; Kabeshov, M. A.; Gaunt, M. J.; Lapkin, A. A. Angew. Chem., Int. Ed. 2016, 55, 8878.
[14] Smalley, A. P.; Cuthbertson, J. D.; Gaunt, M. J. J. Am. Chem. Soc. 2017, 139, 1412.
[15] He, G.; Zhao, Y.; Zhang, S.; Lu, C.; Chen, G. J. Am. Chem. Soc. 2012, 134, 3.
[16] Ye, X.; He, Z.; Ahmed, T.; Weise, K.; Akhmedov, N. G.; Petersen, J. L.; Shi, X. Chem. Sci. 2013, 4, 3712.
[17] (a) Lo, M. M.-C.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 4572.
(b) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res. 2004, 37, 592.
[18] Zhang, Q.; Chen, K.; Rao, W.-H.; Zhang, Y.; Chen, F.-J.; Shi, B.-F. Angew. Chem., Int. Ed. 2013, 52, 13588.
[19] Ling, P.-X.; Fang, S.-L.; Yin, X.-S.; Zhang, Q.; Chen, K.; Shi, B.-F. Chem. Commun. 2017, 53, 6351.
[20] Ting, C. P.; Maimone, T. J. Angew. Chem., Int. Ed. 2014, 126, 3179.
[21] Baudoin, O.; Herrbach, A.; Guéritte, F. Angew. Chem., Int. Ed. 2003, 115, 5914.
[22] Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 12842.
[23] Lafrance, M.; Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 14570.
[24] Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Angew. Chem., Int. Ed. 2011, 50, 7438.
[25] Pedroni, J.; Boghi, M.; Saget, T.; Cramer, N. Angew. Chem., Int. Ed. 2014, 53, 9064.
[26] Dailler, D.; Rocaboy, R.; Baudoin, O. Angew. Chem., Int. Ed. 2017, 56, 7218.
[27] Sun, W.-W.; Cao, P.; Mei, R.-Q.; Li, Y.; Ma, Y.-L.; Wu, B. Org. Lett. 2014, 16, 480.
[28] Zhao, J.; Zhao, X.-J.; Cao, P.; Liu, J.-K.; Wu, B. Org. Lett. 2017, 19, 4880.
[29] Willcox, D.; Chappell, B. G. N.; Hogg, K. F.; Calleja, J.; Smalley, M. G.; Gaunt, M. J. Science 2016, 354, 851.
[30] Cabrera-Pardo, J. R.; Trowbridge, A.; Nappi, M.; Ozaki, K.; Gaunt, M. J. Angew. Chem., Int. Ed. 2017, 129, 12120.
[31] Hogg, K. F.; Trowbridge, A.; Álvarez−Pérez, A.; Gaunt, M. J. Chem. Sci. 2017, 8, 8198.
[32] Zhao, R.; Lu, W. Org. Lett. 2017, 19, 1768.
[33] Nadres, E. T.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 7.
[34] Wang, C.; Chen, C.; Zhang, J.; Han, J.; Wang, Q.; Guo, K.; Liu, P.; Guan, M.; Yao, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2014, 53, 9884.
[35] Jiang, H.; He, J.; Liu, T.; Yu, J.-Q. J. Am. Chem. Soc. 2016, 138, 2055.
[36] He, C.; Gaunt, M. J. Chem. Sci. 2017, 8, 3586.
[37] (a) Meijere, A. D.; Zezschwitz, P. V.; Bräse, S. Acc. Chem. Res. 2005, 38, 413.
(b) Ikeda, S. I. Acc. Chem. Res. 2000, 33, 511.
[38] Ren, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 3462.
[39] Ren, H.; Li, Z.; Knochel, P. Chem. Asian J. 2007, 2, 416.
[40] Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008, 10, 1759.
[41] (a) Thu, H. Y.; Yu, W. Y.; Che, C. M. J. Am. Chem. Soc. 2006, 128, 9048.
(b) Liang, C.; Collet, F.; Robert-Peillard, F.; Müller, P.; Dodd, R. H.; Dauban, P. J. Am. Chem. Soc. 2008, 130, 343.
[42] Neumann, J. J.; Rakshit, S.; Dröge, T.; Glorius, F. Angew. Chem., Int. Ed. 2009, 48, 6892.
[43] Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606.
[44] Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361.
[45] Katayev, D.; Nakanishi, M.; Bürgi, T.; Kündig, E. P. Chem. Sci. 2012, 3, 1422.
[46] Larionov, E.; Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P. Chem. Sci. 2013, 4, 1995.
[47] Katayev, D.; Larionov, E.; Nakanishi, M.; Besnard, C.; Kündig, E. P. Chem.-Eur. J. 2014, 20, 15021.
[48] Anas, S.; Cordi, A.; Kagan, H. B. Chem. Commun. 2011, 47, 11483.
[49] Guyonnet, M.; Baudoin, O. Org. Lett. 2012, 14, 398.
[50] Saget, T.; Lemouzy, S. J.; Cramer, N. Angew. Chem., Int. Ed. 2012, 51, 2238.
[51] Nanjo, T.; Tsukano, C.; Takemoto, Y. Org. Lett. 2012, 14, 4270.
[52] (a) Nelson, A. C.; Kalinowski, E. S.; Jacobson, T. L.; Grundt, P. Tetrahedron Lett. 2013, 54, 6804.
(b) Argade, S. D.; Argrade, N. P. Org. Lett. 2013, 15, 4006.
(c) Wang, C.; Zhang, L.; Ren, A.; Lu, P.; Wang, Y. Org. Lett. 2013, 15, 2982.
[53] Tsukano, C.; Okuno, M.; Nishiguchi, H.; Takemoto, Y. Adv. Synth. Catal. 2014, 356, 1533.
[54] (a) Shimizu, R.; Egami, H.; Nagi, T.; Chae, J.; Hamashima, Y.; Sodeoka, M. Tetrahedron Lett. 2010, 51, 5947.
(b) Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem.-Eur. J. 2015, 21, 8355.
[55] Pedroni, J.; Cramer, N. Org. Lett. 2016, 18, 1932.
[56] Leal, R. A.; Bischof, C.; Lee, Y. V.; Sawano, S.; McAtee, C. C.; Latimer, L. N.; Russ, Z. N.; Dueber, J. E.; Yu, J.-Q.; Sarpong, R. Angew. Chem., Int. Ed. 2016, 55, 11824.
[57] Zhang, S.; Lu, J.; Ye, J.; Duan, W.-L. Chin. J. Org. Chem. 2016, 36, 752(in Chinese). (张松, 陆俊筑, 叶金星, 段伟良, 有机化学, 2016, 36, 752.)
[58] Yang, L.; Melot, R.; Neuburger, M.; Baudoin, O. Chem. Sci. 2017, 8, 1344.
[59] Salcedo, A.; Neuville. L.; Zhu, J. J. Org. Chem. 2008, 73, 3600.
[60] Liégault, B.; Fangou, K. Organometallics 2008, 27, 4841.
[61] Rousseaux, S.; Gorelsky, S. I.; Chung, B. K. W.; Fagnou, K. J. Am. Chem. Soc. 2010, 132, 10692.
[62] Yoo, E. J.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 17378.
[63] Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680.
[64] Tsukano, C.; Okuno, M.; Takemoto, Y. Angew. Chem., Int. Ed. 2012, 51, 2763.
[65] Zhang, Q.; Yu, H.-Z.; Fu, Y. Organometallics 2013, 32, 4165.
[66] He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem., Int. Ed. 2013, 52, 11124.
[67] Zhang, M. J. Chem. Res. 2013, 37, 606.
[68] (a) Nair, J. J.; Aremu, A. O.; Van Staden, J. J. Ethnopharmacol. 2011, 137, 1102.
(b) Evdokimov, N. M.; Lamoral-Theys, D.; Mathieu, V.; Andolfi, A.; Frolova, L. V.; Pelly, S. C.; Van Otterlo, W. A.; Magedov, I. V.; Kiss, R.; Evidente, A.; Kornienko, A. Bioorg. Med. Chem. 2011, 19, 7252.
(c) Evidente, A.; Kornienko, A. Phytochem. Rev. 2009, 8, 449.
[69] (a) De, S.; Mishra, S.; Kakde, B. N.; Dey, D.; Bisai, A. J. Org. Chem. 2013, 78, 7823.
(b) De, S.; Ghosh, S.; Bhunia, S.; Sheikh, J. A.; Bisai, A. Org. Lett. 2012, 14, 4466.
[70] Tsukano, C.; Muto, N.; Enkhtaivan, I.; Takemoto, Y. Chem. Asian J. 2014, 9, 2628.
[71] Holstein, P. M.; Dailler, D.; Vantourout, J.; Shaya, J.; Millet, A.; Baudoin, O. Angew. Chem., Int. Ed. 2015, 55, 2805.
[72] Calleja, J.; Pla, D.; Gorman, T. W.; Domingo, V.; Haffemayer, B.; Gaunt, M. J. Nat. Chem. 2015, 7, 1009.
[73] Wang, C.; Zhang, L.; Chen, C.; Han, J.; Yao, Y.; Zhao, Y. Chem. Sci. 2015, 6, 4610.
[74] Wang, P.-L.; Li, Y.; Wu, Y.; Li, C.; Lan, Q.; Wang, X.-S. Org. Lett. 2015, 17, 3698.
[75] Hernando, E.; Villalva, J.; Martínez, Á. M.; Alonso, I.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J. C. ACS Catal. 2016, 6, 6868.
[76] Parella, R.; Babu, S. A. J. Org. Chem. 2017, 82, 7123.
[77] Tsukano, C.; Okuno, M.; Takemoto, Y. Chem. Lett. 2013, 42, 753.
[78] Ladd, C. L.; Roman, D. S.; Charette, A. B. Org. Lett. 2013, 15, 1350.
[79] Pedroni, J.; Cramer, N. Angew. Chem., Int. Ed. 2015, 54, 11826.
[80] Saget, T.; Perez, D.; Cramer, N. Org. Lett. 2013, 15, 1354.
[81] Zhang, M.; Jovic, F.; Vickers, T.; Dyck, B.; Tamiya, J.; Grey, J.; Tran, J. A.; Fleck, B. A.; Pick, R.; Foster, A. C.; Chen, C. Bioorg. Med. Chem. Lett. 2008, 18, 3682.
[82] Krow, G. R.; Cannon, K. C. Org. Prep. Proced. Int. 2000, 32, 103.
[83] Micheli, F.; Cavanni, P.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Checchia, A.; Davalli, S.; Di Fabio, R.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Minick, D.; Negri, M.; Oliosi, B.; Read, K. D.; Sartori, I.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L. J. Med. Chem. 2010, 53, 2534.
[84] Pedroni, J.; Cramer, N. J. Am. Chem. Soc. 2017, 139, 12398.
[85] Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129, 7274.
[86] (a) Du, H.; Yuan, W.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 7496.
(b) Bar, G. L. J.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127, 7308.
[87] Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2008, 130, 8590.
[88] Fu, R.; Zhao, B.; Shi, Y. J. Org. Chem. 2009, 74, 7577.
[89] Stowers, K. J.; Fortner, K. C.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 6541.
[90] Sofack-Kreutzer, J.; Martin, N.; Renaudat, A.; Jazzar, R.; Baudoin, O. Angew. Chem., Int. Ed. 2012, 51, 10399.
[91] (a) Dailler, D.; Danoun, G.; Baudoin, O. Angew. Chem., Int. Ed. 2015, 54, 4919.
(b) Dailler, D.; Danoun, G.; Ourri, B.; Baudoin, O. Chem. Eur. J. 2015, 21, 9370.
[92] Miki, Y.; Umemoto, H.; Dohshita, M.; Hamamoto, H. Tetrahedron Lett. 2012, 53, 1924.
[93] Rousseaux, S.; Davi, M.; Sofack-Kreutzer, J.; Pierre, C.; Kefalidis, C. E.; Clot, E.; Fagnou, K.; Baudoin, O. J. Am. Chem. Soc. 2010, 132, 10706.
[94] Strambeanu, I. I.; White, M. C. J. Am. Chem. Soc. 2013, 135, 12032.
[95] Osberger, T. J.; White, M. C. J. Am. Chem. Soc. 2014, 136, 11176.
[96] (a) Meyers, A. I. Acc. Chem. Res. 1978, 11, 375.
(b) Lipshutz, B. H. Chem. Rev. 1986, 86, 795.
(c) Gomez, M.; Muller, G.; Rocamora, M. Coord. Chem. Rev. 1999, 193, 769.
(d) Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260.
(e) Giri, R.; Chen, X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2005, 44, 2112.
[97] Frump, J. A. Chem. Rev. 1971, 71, 483.
[98] Li, B.; Wang, S.-Q.; Liu, B.; Shi, B.-F. Org. Lett. 2015, 17, 1200.
[99] (a) Mitsunobu, O. In Comprehensive Organic Synthesis, Eds.:Fleming, I.; Trost, B. M., Pergamon, Oxford, 1991, p. 1.
(b) Smith, M. B.; March, J. Advanced Organic Chemistry, Wiley Interscience, New York, 2001, p. 479.
[100] Thompson, S. J.; Thach, D. Q.; Dong, G. J. Am. Chem. Soc. 2015, 137, 11586.
[101] Lee, J. M.; Chang, S. Tetrahedron Lett. 2006, 47, 1375.
[102] Novák, P.; Correa, A.; Gallardo−Donaire, J.; Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236.
[103] Eom, D.; Jeong, Y.; Kim, Y. R.; Lee, E.; Choi, W.; Lee, P. H. Org. Lett. 2013, 15, 5210.
[104] Shi, B.-F.; Liu, B. Synlett 2016, 27, 2396.
[105] Wang, H.; Niu, Y.; Zhang, G.; Ye, X.-S. Tetrahedron Lett. 2016, 57, 4544.
[106] McCallum, M. E.; Rasik, C. M.; Wood, J. L.; Brown, M. K. J. Am. Chem. Soc. 2016, 138, 2437.
[107] Dangel, B. D.; Godula, K.; Youn, S. W.; Sezen, B.; Sames, D. J. Am. Chem. Soc. 2002, 124, 11856.
[108] Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2009, 131, 11707.
[109] Nahra, F.; Liron, F.; Prestat, G.; Mealli, C.; Messaoudi, A.; Poli, G. Chem. Eur. J. 2009, 15, 11078.
[110] Qi, X. B.; Rice, G. T.; Lall, M. S.; Plummer, M. S.; White, M. C. Tetrahedron. 2010, 66, 4816.
[111] Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
[112] Feng, Y.; Wang, Y.; Landgraf, B.; Liu, S.; Chen, G. Org. Lett. 2010, 12, 3414.
[113] Yan, J.-X.; Li, H.; Liu, X.-W.; Shi, J.-L.; Wang, X.; Shi, Z.-J. Angew. Chem., Int. Ed. 2014, 53, 4945.
[114] Deng, Y.; Gong, W.; He, J.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 6692.
[115] Liu, W.; Yu, Q.; Hu, L.; Chen, Z.; Huang, J. Chem. Sci. 2015, 6, 5768.
[116] Guan, M.; Pang, Y.; Zhang, J.; Zhao, Y. Chem. Commun. 2016, 52, 7043.
[117] Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci. 2013, 4, 3906.
[118] Ruan, Z.; Sauermann, N.; Manoni, E.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 3172.
[119] Yoshioka, S.; Nagatomo, M.; Inoue, M. Org. Lett. 2015, 17, 90.
[120] Boultadakis-Arapinis, M.; Lemoine, P.; Turcaud, S.; Micouin, L.; Lecourt, T. J. Am. Chem. Soc. 2010, 132, 15477.
[121] Probst, N.; Grelier, G.; Ghermani, N.; Gandon, V.; Alami, M.; Messaoudi, S. Org. Lett. 2017, 19, 5038.
[122] Wang, P.-S.; Shen, M.-L.; Wang, T.-C.; Lin, H.-C.; Gong, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 16032.
[123] Rousseaux, S.; Liégault, B.; Fagnou, K. Chem. Sci. 2012, 3, 244.
[124] Pedroni, J.; Saget, T.; Donets, P. A.; Cramer, N. Chem. Sci. 2015, 6, 5164.
[125] Ladd, C. L.; Belouin, A. V.; Charette, A. B. J. Org. Chem. 2016, 81, 256.
[126] Ladd, C. L.; Charette, A. B. Org. Lett. 2016, 18, 6046.
[127] Dyker, G. Angew. Chem., Int. Ed. 1992, 31, 1023.
[128] (a) Dyker, G. J. Org. Chem. 1993, 58, 6426.
(b) Dyker, G. Chem. Ber. 1994, 127, 739.
[129] Gormisky, P. E.; White, M. C. J. Am. Chem. Soc. 2011, 133, 12584.
[130] Ammann, S. E.; Rice, G. T.; White, M. C. J. Am. Chem. Soc. 2014, 136, 10834.
[131] Wang, P.-S.; Liu, P.; Zhai, Y.-J.; Lin, H.-C.; Han, Z.-Y.; Gong, L.-Z. J. Am. Chem. Soc. 2015, 137, 12732.
[132] Ammann, S. E.; Liu, W.; White, M. C. Angew. Chem., Int. Ed. 2016, 55, 9571.
[133] Fraunhoffer, K. J.; Prabagaran, N.; Sirois, L. E.; White, M. C. J. Am. Chem. Soc. 2006, 128, 9032.
[134] Wu, L.; Qiu, S.; Liu, G. Org. Lett. 2009, 11, 2707.
[135] Stang, E. M.; White, M. C. Nat. Chem. 2009, 1, 547.
[136] Stang, E. M.; White, M. C. Angew. Chem., Int. Ed. 2011, 50, 2094.
[137] Ladd, C. L.; Roman, D. S.; Charette, A. B. Tetrahedron 2013, 69, 4479.

Outlines

/