Chin. J. Org. Chem. ›› 2018, Vol. 38 ›› Issue (11): 2833-2857.DOI: 10.6023/cjoc201805028 Previous Articles     Next Articles

Special Issue: 有机小分子-金属协同催化 碳氢活化合辑2018-2019



赵康a,b, 杨磊a, 刘建华a, 夏春谷a   

  1. a 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000;
    b 中国科学院大学 北京 100049
  • 收稿日期:2018-05-13 修回日期:2018-06-26 发布日期:2018-07-24
  • 通讯作者: 杨磊, 刘建华;
  • 基金资助:


Recent Advances in the Synthesis of Heterocyclic Compounds via Pd-Catalyzed C(sp3)-H Bond Activation

Zhao Kanga,b, Yang Leia, Liu Jianhuaa, Xia Chungua   

  1. a State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;
    b University of Chinise Academy of Science, Beijing 100049
  • Received:2018-05-13 Revised:2018-06-26 Published:2018-07-24
  • Supported by:

    Project supported by the National Natural Science Foundation of China (Nos. 21372231, 21673260).

Heterocyclic compounds are not only important intermediates in organic synthesis and medicine synthesis, but also the basic building framework of biologically active natural products. In recent years, Pd-catalyzed C(sp3)-H bonds activation has been demonstrated as one of the hot topics in the field of heterocyclic compound synthesis because of its high atomic economic characteristics. Herein, the recent research progress in the construction of heterocyclic compounds via Pd-catalyzed C(sp3)-H bond activation is summarized according to the classification of the ring number of heterocyclic compounds (mainly including N, O heterocycles). The reaction selectivity, substrate compatibility, reaction mechanism, advantages and disadvantages as well as an outlook in this field are also discussed.

Key words: Pd-catalyzed, C (sp3)-H bond activation, heterocyclic compounds